Proof of Theorem dfeldisj3
Step | Hyp | Ref
| Expression |
1 | | df-eldisj 36818 |
. . 3
⊢ ( ElDisj
𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
2 | | relres 5920 |
. . . 4
⊢ Rel
(◡ E ↾ 𝐴) |
3 | | dfdisjALTV3 36826 |
. . . 4
⊢ ( Disj
(◡ E ↾ 𝐴) ↔ (∀𝑢∀𝑣∀𝑥((𝑢(◡ E
↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) → 𝑢 = 𝑣) ∧ Rel (◡ E ↾ 𝐴))) |
4 | 2, 3 | mpbiran2 707 |
. . 3
⊢ ( Disj
(◡ E ↾ 𝐴) ↔ ∀𝑢∀𝑣∀𝑥((𝑢(◡ E
↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) → 𝑢 = 𝑣)) |
5 | | an4 653 |
. . . . . . 7
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))) |
6 | | brcnvepres 36406 |
. . . . . . . . 9
⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢))) |
7 | 6 | el2v 3440 |
. . . . . . . 8
⊢ (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
8 | | brcnvepres 36406 |
. . . . . . . . 9
⊢ ((𝑣 ∈ V ∧ 𝑥 ∈ V) → (𝑣(◡ E ↾ 𝐴)𝑥 ↔ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣))) |
9 | 8 | el2v 3440 |
. . . . . . . 8
⊢ (𝑣(◡ E ↾ 𝐴)𝑥 ↔ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣)) |
10 | 7, 9 | anbi12i 627 |
. . . . . . 7
⊢ ((𝑢(◡ E ↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢) ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣))) |
11 | | elin 3903 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑢 ∩ 𝑣) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
12 | 11 | anbi2i 623 |
. . . . . . 7
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ (𝑢 ∩ 𝑣)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))) |
13 | 5, 10, 12 | 3bitr4i 303 |
. . . . . 6
⊢ ((𝑢(◡ E ↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ (𝑢 ∩ 𝑣))) |
14 | | df-3an 1088 |
. . . . . 6
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ (𝑢 ∩ 𝑣)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ (𝑢 ∩ 𝑣))) |
15 | 13, 14 | bitr4i 277 |
. . . . 5
⊢ ((𝑢(◡ E ↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) ↔ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ (𝑢 ∩ 𝑣))) |
16 | 15 | imbi1i 350 |
. . . 4
⊢ (((𝑢(◡ E ↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) → 𝑢 = 𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ (𝑢 ∩ 𝑣)) → 𝑢 = 𝑣)) |
17 | 16 | 3albii 36387 |
. . 3
⊢
(∀𝑢∀𝑣∀𝑥((𝑢(◡ E
↾ 𝐴)𝑥 ∧ 𝑣(◡ E
↾ 𝐴)𝑥) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ (𝑢 ∩ 𝑣)) → 𝑢 = 𝑣)) |
18 | 1, 4, 17 | 3bitri 297 |
. 2
⊢ ( ElDisj
𝐴 ↔ ∀𝑢∀𝑣∀𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ (𝑢 ∩ 𝑣)) → 𝑢 = 𝑣)) |
19 | | r3al 3119 |
. 2
⊢
(∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣 ↔ ∀𝑢∀𝑣∀𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ (𝑢 ∩ 𝑣)) → 𝑢 = 𝑣)) |
20 | 18, 19 | bitr4i 277 |
1
⊢ ( ElDisj
𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣) |