Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj3 Structured version   Visualization version   GIF version

Theorem dfeldisj3 38701
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj3 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)𝑢 = 𝑣)
Distinct variable group:   𝑢,𝐴,𝑣,𝑥

Proof of Theorem dfeldisj3
StepHypRef Expression
1 df-eldisj 38689 . . 3 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 6026 . . . 4 Rel ( E ↾ 𝐴)
3 dfdisjALTV3 38697 . . . 4 ( Disj ( E ↾ 𝐴) ↔ (∀𝑢𝑣𝑥((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) → 𝑢 = 𝑣) ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 710 . . 3 ( Disj ( E ↾ 𝐴) ↔ ∀𝑢𝑣𝑥((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) → 𝑢 = 𝑣))
5 an4 656 . . . . . . 7 (((𝑢𝐴𝑥𝑢) ∧ (𝑣𝐴𝑥𝑣)) ↔ ((𝑢𝐴𝑣𝐴) ∧ (𝑥𝑢𝑥𝑣)))
6 brcnvepres 38249 . . . . . . . . 9 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢)))
76el2v 3485 . . . . . . . 8 (𝑢( E ↾ 𝐴)𝑥 ↔ (𝑢𝐴𝑥𝑢))
8 brcnvepres 38249 . . . . . . . . 9 ((𝑣 ∈ V ∧ 𝑥 ∈ V) → (𝑣( E ↾ 𝐴)𝑥 ↔ (𝑣𝐴𝑥𝑣)))
98el2v 3485 . . . . . . . 8 (𝑣( E ↾ 𝐴)𝑥 ↔ (𝑣𝐴𝑥𝑣))
107, 9anbi12i 628 . . . . . . 7 ((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) ↔ ((𝑢𝐴𝑥𝑢) ∧ (𝑣𝐴𝑥𝑣)))
11 elin 3979 . . . . . . . 8 (𝑥 ∈ (𝑢𝑣) ↔ (𝑥𝑢𝑥𝑣))
1211anbi2i 623 . . . . . . 7 (((𝑢𝐴𝑣𝐴) ∧ 𝑥 ∈ (𝑢𝑣)) ↔ ((𝑢𝐴𝑣𝐴) ∧ (𝑥𝑢𝑥𝑣)))
135, 10, 123bitr4i 303 . . . . . 6 ((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) ↔ ((𝑢𝐴𝑣𝐴) ∧ 𝑥 ∈ (𝑢𝑣)))
14 df-3an 1088 . . . . . 6 ((𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)) ↔ ((𝑢𝐴𝑣𝐴) ∧ 𝑥 ∈ (𝑢𝑣)))
1513, 14bitr4i 278 . . . . 5 ((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) ↔ (𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)))
1615imbi1i 349 . . . 4 (((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) → 𝑢 = 𝑣) ↔ ((𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)) → 𝑢 = 𝑣))
17163albii 1818 . . 3 (∀𝑢𝑣𝑥((𝑢( E ↾ 𝐴)𝑥𝑣( E ↾ 𝐴)𝑥) → 𝑢 = 𝑣) ↔ ∀𝑢𝑣𝑥((𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)) → 𝑢 = 𝑣))
181, 4, 173bitri 297 . 2 ( ElDisj 𝐴 ↔ ∀𝑢𝑣𝑥((𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)) → 𝑢 = 𝑣))
19 r3al 3195 . 2 (∀𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)𝑢 = 𝑣 ↔ ∀𝑢𝑣𝑥((𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)) → 𝑢 = 𝑣))
2018, 19bitr4i 278 1 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴𝑥 ∈ (𝑢𝑣)𝑢 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535  wcel 2106  wral 3059  Vcvv 3478  cin 3962   class class class wbr 5148   E cep 5588  ccnv 5688  cres 5691  Rel wrel 5694   Disj wdisjALTV 38196   ElDisj weldisj 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-coss 38393  df-cnvrefrel 38509  df-disjALTV 38687  df-eldisj 38689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator