![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid3 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
Ref | Expression |
---|---|
cosscnvssid3 | ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 37865 | . 2 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
2 | alrot3 2150 | . 2 ⊢ (∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
3 | brcnvg 5876 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
4 | 3 | el2v 3477 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
5 | brcnvg 5876 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑣 ∈ V) → (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥)) | |
6 | 5 | el2v 3477 | . . . . 5 ⊢ (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥) |
7 | 4, 6 | anbi12i 626 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) ↔ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) |
8 | 7 | imbi1i 349 | . . 3 ⊢ (((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
9 | 8 | 3albii 1816 | . 2 ⊢ (∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
10 | 1, 2, 9 | 3bitri 297 | 1 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 Vcvv 3469 ⊆ wss 3944 class class class wbr 5142 I cid 5569 ◡ccnv 5671 ≀ ccoss 37570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-cnv 5680 df-coss 37807 |
This theorem is referenced by: dfdisjs3 38106 dfdisjALTV3 38111 eldisjs3 38120 |
Copyright terms: Public domain | W3C validator |