Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid3 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
Ref | Expression |
---|---|
cosscnvssid3 | ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 36324 | . 2 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
2 | alrot3 2161 | . 2 ⊢ (∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
3 | brcnvg 5748 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
4 | 3 | el2v 3416 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
5 | brcnvg 5748 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑣 ∈ V) → (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥)) | |
6 | 5 | el2v 3416 | . . . . 5 ⊢ (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥) |
7 | 4, 6 | anbi12i 630 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) ↔ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) |
8 | 7 | imbi1i 353 | . . 3 ⊢ (((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
9 | 8 | 3albii 36124 | . 2 ⊢ (∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
10 | 1, 2, 9 | 3bitri 300 | 1 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 Vcvv 3408 ⊆ wss 3866 class class class wbr 5053 I cid 5454 ◡ccnv 5550 ≀ ccoss 36070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-cnv 5559 df-coss 36274 |
This theorem is referenced by: dfdisjs3 36558 dfdisjALTV3 36563 eldisjs3 36572 |
Copyright terms: Public domain | W3C validator |