Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid3 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
Ref | Expression |
---|---|
cosscnvssid3 | ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 36514 | . 2 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
2 | alrot3 2159 | . 2 ⊢ (∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
3 | brcnvg 5777 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
4 | 3 | el2v 3430 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
5 | brcnvg 5777 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑣 ∈ V) → (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥)) | |
6 | 5 | el2v 3430 | . . . . 5 ⊢ (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥) |
7 | 4, 6 | anbi12i 626 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) ↔ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) |
8 | 7 | imbi1i 349 | . . 3 ⊢ (((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
9 | 8 | 3albii 36314 | . 2 ⊢ (∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
10 | 1, 2, 9 | 3bitri 296 | 1 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 I cid 5479 ◡ccnv 5579 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-cnv 5588 df-coss 36464 |
This theorem is referenced by: dfdisjs3 36748 dfdisjALTV3 36753 eldisjs3 36762 |
Copyright terms: Public domain | W3C validator |