Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid3 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
Ref | Expression |
---|---|
cosscnvssid3 | ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 36587 | . 2 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
2 | alrot3 2157 | . 2 ⊢ (∀𝑥∀𝑢∀𝑣((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣)) | |
3 | brcnvg 5788 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
4 | 3 | el2v 3440 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
5 | brcnvg 5788 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑣 ∈ V) → (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥)) | |
6 | 5 | el2v 3440 | . . . . 5 ⊢ (𝑥◡𝑅𝑣 ↔ 𝑣𝑅𝑥) |
7 | 4, 6 | anbi12i 627 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) ↔ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) |
8 | 7 | imbi1i 350 | . . 3 ⊢ (((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
9 | 8 | 3albii 36387 | . 2 ⊢ (∀𝑢∀𝑣∀𝑥((𝑥◡𝑅𝑢 ∧ 𝑥◡𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
10 | 1, 2, 9 | 3bitri 297 | 1 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 I cid 5488 ◡ccnv 5588 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-cnv 5597 df-coss 36537 |
This theorem is referenced by: dfdisjs3 36821 dfdisjALTV3 36826 eldisjs3 36835 |
Copyright terms: Public domain | W3C validator |