Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvssid3 Structured version   Visualization version   GIF version

Theorem cosscnvssid3 36331
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.)
Assertion
Ref Expression
cosscnvssid3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
Distinct variable group:   𝑢,𝑅,𝑣,𝑥

Proof of Theorem cosscnvssid3
StepHypRef Expression
1 cossssid3 36324 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑢𝑣((𝑥𝑅𝑢𝑥𝑅𝑣) → 𝑢 = 𝑣))
2 alrot3 2161 . 2 (∀𝑥𝑢𝑣((𝑥𝑅𝑢𝑥𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢𝑣𝑥((𝑥𝑅𝑢𝑥𝑅𝑣) → 𝑢 = 𝑣))
3 brcnvg 5748 . . . . . 6 ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥𝑅𝑢𝑢𝑅𝑥))
43el2v 3416 . . . . 5 (𝑥𝑅𝑢𝑢𝑅𝑥)
5 brcnvg 5748 . . . . . 6 ((𝑥 ∈ V ∧ 𝑣 ∈ V) → (𝑥𝑅𝑣𝑣𝑅𝑥))
65el2v 3416 . . . . 5 (𝑥𝑅𝑣𝑣𝑅𝑥)
74, 6anbi12i 630 . . . 4 ((𝑥𝑅𝑢𝑥𝑅𝑣) ↔ (𝑢𝑅𝑥𝑣𝑅𝑥))
87imbi1i 353 . . 3 (((𝑥𝑅𝑢𝑥𝑅𝑣) → 𝑢 = 𝑣) ↔ ((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
983albii 36124 . 2 (∀𝑢𝑣𝑥((𝑥𝑅𝑢𝑥𝑅𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
101, 2, 93bitri 300 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541  Vcvv 3408  wss 3866   class class class wbr 5053   I cid 5454  ccnv 5550  ccoss 36070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-cnv 5559  df-coss 36274
This theorem is referenced by:  dfdisjs3  36558  dfdisjALTV3  36563  eldisjs3  36572
  Copyright terms: Public domain W3C validator