![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi2i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi2i | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 253 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
2 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | biid 253 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1198 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ w3a 1111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1113 |
This theorem is referenced by: f13dfv 6790 axgroth4 9976 fi1uzind 13575 bnj543 31505 bnj916 31545 topdifinffinlem 33739 |
Copyright terms: Public domain | W3C validator |