|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3anbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| 3anbi2i | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1156 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: f13dfv 7294 axgroth4 10872 fi1uzind 14546 bnj543 34907 bnj916 34947 topdifinffinlem 37348 | 
| Copyright terms: Public domain | W3C validator |