MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi2i Structured version   Visualization version   GIF version

Theorem 3anbi2i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi2i ((𝜒𝜑𝜃) ↔ (𝜒𝜓𝜃))

Proof of Theorem 3anbi2i
StepHypRef Expression
1 biid 260 . 2 (𝜒𝜒)
2 3anbi1i.1 . 2 (𝜑𝜓)
3 biid 260 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1154 1 ((𝜒𝜑𝜃) ↔ (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  f13dfv  7146  axgroth4  10588  fi1uzind  14211  bnj543  32873  bnj916  32913  topdifinffinlem  35518
  Copyright terms: Public domain W3C validator