Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinffinlem Structured version   Visualization version   GIF version

Theorem topdifinffinlem 37313
Description: This is the core of the proof of topdifinffin 37314, but to avoid the distinct variables on the definition, we need to split this proof into two. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinffinlem (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem topdifinffinlem
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . 5 𝑢 ¬ 𝐴 ∈ Fin
2 nfab1 2910 . . . . 5 𝑢{𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}}
3 nfcv 2908 . . . . 5 𝑢𝑇
4 abid 2721 . . . . . . . . . . 11 (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦𝐴 𝑢 = {𝑦})
5 df-rex 3077 . . . . . . . . . . 11 (∃𝑦𝐴 𝑢 = {𝑦} ↔ ∃𝑦(𝑦𝐴𝑢 = {𝑦}))
64, 5bitri 275 . . . . . . . . . 10 (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦(𝑦𝐴𝑢 = {𝑦}))
7 eqid 2740 . . . . . . . . . . . . . . 15 {𝑦} = {𝑦}
8 vsnex 5449 . . . . . . . . . . . . . . . . . 18 {𝑦} ∈ V
9 snelpwi 5463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
10 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = {𝑦} → (𝑥 ∈ 𝒫 𝐴 ↔ {𝑦} ∈ 𝒫 𝐴))
119, 10imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = {𝑦} → (𝑦𝐴𝑥 ∈ 𝒫 𝐴))
1211imdistani 568 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))
1312anim2i 616 . . . . . . . . . . . . . . . . . . . . . . . 24 ((¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑦𝐴)) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
14133impb 1115 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
15 3anass 1095 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
1614, 15sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))
17 snfi 9109 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝑦} ∈ Fin
18 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
20 difinf 9377 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ 𝐴 ∈ Fin ∧ 𝑥 ∈ Fin) → ¬ (𝐴𝑥) ∈ Fin)
2119, 20sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → ¬ (𝐴𝑥) ∈ Fin)
2221orcd 872 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2322anim2i 616 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ 𝒫 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦})) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2423ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 (((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
25243impa 1110 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2616, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
27 topdifinf.t . . . . . . . . . . . . . . . . . . . . . 22 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
2827reqabi 3467 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2926, 28sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → 𝑥𝑇)
30 eleq1 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = {𝑦} → (𝑥𝑇 ↔ {𝑦} ∈ 𝑇))
31303ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥𝑇 ↔ {𝑦} ∈ 𝑇))
3229, 31mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
3332sbcth 3819 . . . . . . . . . . . . . . . . . 18 ({𝑦} ∈ V → [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇))
348, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
35 sbcimg 3856 . . . . . . . . . . . . . . . . . 18 ({𝑦} ∈ V → ([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)))
368, 35ax-mp 5 . . . . . . . . . . . . . . . . 17 ([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇))
3734, 36mpbi 230 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)
38 sbc3an 3874 . . . . . . . . . . . . . . . . . 18 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
39 sbcg 3883 . . . . . . . . . . . . . . . . . . . 20 ({𝑦} ∈ V → ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin))
408, 39ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin)
41403anbi1i 1157 . . . . . . . . . . . . . . . . . 18 (([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
42 eqsbc1 3854 . . . . . . . . . . . . . . . . . . . 20 ({𝑦} ∈ V → ([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦}))
438, 42ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦})
44433anbi2i 1158 . . . . . . . . . . . . . . . . . 18 ((¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
4538, 41, 443bitri 297 . . . . . . . . . . . . . . . . 17 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
46 sbcg 3883 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ∈ V → ([{𝑦} / 𝑥]𝑦𝐴𝑦𝐴))
478, 46ax-mp 5 . . . . . . . . . . . . . . . . . 18 ([{𝑦} / 𝑥]𝑦𝐴𝑦𝐴)
48473anbi3i 1159 . . . . . . . . . . . . . . . . 17 ((¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴))
4945, 48bitri 275 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴))
50 sbcg 3883 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ V → ([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇))
518, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)
5237, 49, 513imtr3i 291 . . . . . . . . . . . . . . 15 ((¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
537, 52mp3an2 1449 . . . . . . . . . . . . . 14 ((¬ 𝐴 ∈ Fin ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
5453ex 412 . . . . . . . . . . . . 13 𝐴 ∈ Fin → (𝑦𝐴 → {𝑦} ∈ 𝑇))
5554pm4.71d 561 . . . . . . . . . . . 12 𝐴 ∈ Fin → (𝑦𝐴 ↔ (𝑦𝐴 ∧ {𝑦} ∈ 𝑇)))
5655anbi1d 630 . . . . . . . . . . 11 𝐴 ∈ Fin → ((𝑦𝐴𝑢 = {𝑦}) ↔ ((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
5756exbidv 1920 . . . . . . . . . 10 𝐴 ∈ Fin → (∃𝑦(𝑦𝐴𝑢 = {𝑦}) ↔ ∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
586, 57bitrid 283 . . . . . . . . 9 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
59 anass 468 . . . . . . . . . . 11 (((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ (𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})))
6059exbii 1846 . . . . . . . . . 10 (∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})))
61 exsimpr 1868 . . . . . . . . . 10 (∃𝑦(𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})) → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}))
6260, 61sylbi 217 . . . . . . . . 9 (∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}))
6358, 62biimtrdi 253 . . . . . . . 8 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦})))
64 ancom 460 . . . . . . . . . 10 (({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇))
65 eleq1 2832 . . . . . . . . . . 11 (𝑢 = {𝑦} → (𝑢𝑇 ↔ {𝑦} ∈ 𝑇))
6665pm5.32i 574 . . . . . . . . . 10 ((𝑢 = {𝑦} ∧ 𝑢𝑇) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇))
6764, 66bitr4i 278 . . . . . . . . 9 (({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ 𝑢𝑇))
6867exbii 1846 . . . . . . . 8 (∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ ∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇))
6963, 68imbitrdi 251 . . . . . . 7 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇)))
70 exsimpr 1868 . . . . . . 7 (∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇) → ∃𝑦 𝑢𝑇)
7169, 70syl6 35 . . . . . 6 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦 𝑢𝑇))
72 ax5e 1911 . . . . . 6 (∃𝑦 𝑢𝑇𝑢𝑇)
7371, 72syl6 35 . . . . 5 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → 𝑢𝑇))
741, 2, 3, 73ssrd 4013 . . . 4 𝐴 ∈ Fin → {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ⊆ 𝑇)
75 eqid 2740 . . . . 5 {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} = {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}}
7675dissneq 37307 . . . 4 (({𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ⊆ 𝑇𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴)
7774, 76sylan 579 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴)
78 nfielex 9335 . . . . 5 𝐴 ∈ Fin → ∃𝑦 𝑦𝐴)
7978adantr 480 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦𝐴)
80 difss 4159 . . . . . . 7 (𝐴 ∖ {𝑦}) ⊆ 𝐴
81 elfvex 6958 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ V)
82 difexg 5347 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ {𝑦}) ∈ V)
83 elpwg 4625 . . . . . . . 8 ((𝐴 ∖ {𝑦}) ∈ V → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴))
8481, 82, 833syl 18 . . . . . . 7 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴))
8580, 84mpbiri 258 . . . . . 6 (𝑇 ∈ (TopOn‘𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴)
8685adantl 481 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴)
87 difinf 9377 . . . . . . . . . . . 12 ((¬ 𝐴 ∈ Fin ∧ {𝑦} ∈ Fin) → ¬ (𝐴 ∖ {𝑦}) ∈ Fin)
8817, 87mpan2 690 . . . . . . . . . . 11 𝐴 ∈ Fin → ¬ (𝐴 ∖ {𝑦}) ∈ Fin)
89 0fi 9108 . . . . . . . . . . . 12 ∅ ∈ Fin
90 eleq1 2832 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑦}) = ∅ → ((𝐴 ∖ {𝑦}) ∈ Fin ↔ ∅ ∈ Fin))
9189, 90mpbiri 258 . . . . . . . . . . 11 ((𝐴 ∖ {𝑦}) = ∅ → (𝐴 ∖ {𝑦}) ∈ Fin)
9288, 91nsyl 140 . . . . . . . . . 10 𝐴 ∈ Fin → ¬ (𝐴 ∖ {𝑦}) = ∅)
9392ad2antrl 727 . . . . . . . . 9 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = ∅)
94 vsnid 4685 . . . . . . . . . . . . . 14 𝑦 ∈ {𝑦}
95 inelcm 4488 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑦 ∈ {𝑦}) → (𝐴 ∩ {𝑦}) ≠ ∅)
9694, 95mpan2 690 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝐴 ∩ {𝑦}) ≠ ∅)
97 disj4 4482 . . . . . . . . . . . . . 14 ((𝐴 ∩ {𝑦}) = ∅ ↔ ¬ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
9897necon2abii 2997 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ (𝐴 ∩ {𝑦}) ≠ ∅)
9996, 98sylibr 234 . . . . . . . . . . . 12 (𝑦𝐴 → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
10099pssned 4124 . . . . . . . . . . 11 (𝑦𝐴 → (𝐴 ∖ {𝑦}) ≠ 𝐴)
101100adantr 480 . . . . . . . . . 10 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (𝐴 ∖ {𝑦}) ≠ 𝐴)
102101neneqd 2951 . . . . . . . . 9 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = 𝐴)
10393, 102jca 511 . . . . . . . 8 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴))
104 pm4.56 989 . . . . . . . 8 ((¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴) ↔ ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))
105103, 104sylib 218 . . . . . . 7 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))
106 difeq2 4143 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
107106eleq1d 2829 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
108107notbid 318 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∖ {𝑦}) → (¬ (𝐴𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
109 eqeq1 2744 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = ∅ ↔ (𝐴 ∖ {𝑦}) = ∅))
110 eqeq1 2744 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = 𝐴 ↔ (𝐴 ∖ {𝑦}) = 𝐴))
111109, 110orbi12d 917 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
112108, 111orbi12d 917 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
113112, 27elrab2 3711 . . . . . . . . . 10 ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
11485biantrurd 532 . . . . . . . . . 10 (𝑇 ∈ (TopOn‘𝐴) → ((¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))))
115113, 114bitr4id 290 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
116 dfin4 4297 . . . . . . . . . . 11 (𝐴 ∩ {𝑦}) = (𝐴 ∖ (𝐴 ∖ {𝑦}))
117 inss2 4259 . . . . . . . . . . . 12 (𝐴 ∩ {𝑦}) ⊆ {𝑦}
118 ssfi 9240 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∩ {𝑦}) ⊆ {𝑦}) → (𝐴 ∩ {𝑦}) ∈ Fin)
11917, 117, 118mp2an 691 . . . . . . . . . . 11 (𝐴 ∩ {𝑦}) ∈ Fin
120116, 119eqeltrri 2841 . . . . . . . . . 10 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
121 biortn 936 . . . . . . . . . 10 ((𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin → (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
122120, 121ax-mp 5 . . . . . . . . 9 (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
123115, 122bitr4di 289 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
124123ad2antll 728 . . . . . . 7 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
125105, 124mtbird 325 . . . . . 6 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇)
126125expcom 413 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦𝐴 → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇))
127 nelneq2 2869 . . . . . 6 (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝒫 𝐴 = 𝑇)
128 eqcom 2747 . . . . . 6 (𝑇 = 𝒫 𝐴 ↔ 𝒫 𝐴 = 𝑇)
129127, 128sylnibr 329 . . . . 5 (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝑇 = 𝒫 𝐴)
13086, 126, 129syl6an 683 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦𝐴 → ¬ 𝑇 = 𝒫 𝐴))
13179, 130exellimddv 37311 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ¬ 𝑇 = 𝒫 𝐴)
13277, 131pm2.65da 816 . 2 𝐴 ∈ Fin → ¬ 𝑇 ∈ (TopOn‘𝐴))
133132con4i 114 1 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  [wsbc 3804  cdif 3973  cin 3975  wss 3976  wpss 3977  c0 4352  𝒫 cpw 4622  {csn 4648  cfv 6573  Fincfn 9003  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007  df-topgen 17503  df-top 22921  df-topon 22938
This theorem is referenced by:  topdifinffin  37314
  Copyright terms: Public domain W3C validator