| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑢 ¬ 𝐴 ∈ Fin |
| 2 | | nfab1 2901 |
. . . . 5
⊢
Ⅎ𝑢{𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} |
| 3 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑢𝑇 |
| 4 | | abid 2718 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ↔ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}) |
| 5 | | df-rex 3062 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐴 𝑢 = {𝑦} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦})) |
| 6 | 4, 5 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦})) |
| 7 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ {𝑦} = {𝑦} |
| 8 | | vsnex 5409 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑦} ∈ V |
| 9 | | snelpwi 5423 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) |
| 10 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = {𝑦} → (𝑥 ∈ 𝒫 𝐴 ↔ {𝑦} ∈ 𝒫 𝐴)) |
| 11 | 9, 10 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = {𝑦} → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 12 | 11 | imdistani 568 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)) |
| 13 | 12 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((¬
𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴)) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))) |
| 14 | 13 | 3impb 1114 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))) |
| 15 | | 3anass 1094 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))) |
| 16 | 14, 15 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)) |
| 17 | | snfi 9062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {𝑦} ∈ Fin |
| 18 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) |
| 19 | 17, 18 | mpbiri 258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
| 20 | | difinf 9326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 ∈ Fin) → ¬ (𝐴 ∖ 𝑥) ∈ Fin) |
| 21 | 19, 20 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → ¬ (𝐴 ∖ 𝑥) ∈ Fin) |
| 22 | 21 | orcd 873 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
| 23 | 22 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦})) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 24 | 23 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 25 | 24 | 3impa 1109 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 26 | 16, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 27 | | topdifinf.t |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
| 28 | 27 | reqabi 3444 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 29 | 26, 28 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝑇) |
| 30 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = {𝑦} → (𝑥 ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
| 31 | 30 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
| 32 | 29, 31 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
| 33 | 32 | sbcth 3785 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑦} ∈ V → [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇)) |
| 34 | 8, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
[{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
| 35 | | sbcimg 3819 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇))) |
| 36 | 8, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)) |
| 37 | 34, 36 | mpbi 230 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇) |
| 38 | | sbc3an 3835 |
. . . . . . . . . . . . . . . . . 18
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) ↔ ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
| 39 | | sbcg 3843 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin)) |
| 40 | 8, 39 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin) |
| 41 | 40 | 3anbi1i 1157 |
. . . . . . . . . . . . . . . . . 18
⊢
(([{𝑦} /
𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
| 42 | | eqsbc1 3817 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦})) |
| 43 | 8, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦}) |
| 44 | 43 | 3anbi2i 1158 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝐴 ∈ Fin ∧
[{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
| 45 | 38, 41, 44 | 3bitri 297 |
. . . . . . . . . . . . . . . . 17
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
| 46 | | sbcg 3843 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 47 | 8, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
([{𝑦} / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 48 | 47 | 3anbi3i 1159 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦 ∈ 𝐴)) |
| 49 | 45, 48 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦 ∈ 𝐴)) |
| 50 | | sbcg 3843 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
| 51 | 8, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇) |
| 52 | 37, 49, 51 | 3imtr3i 291 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
| 53 | 7, 52 | mp3an2 1451 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
| 54 | 53 | ex 412 |
. . . . . . . . . . . . 13
⊢ (¬
𝐴 ∈ Fin → (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝑇)) |
| 55 | 54 | pm4.71d 561 |
. . . . . . . . . . . 12
⊢ (¬
𝐴 ∈ Fin → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇))) |
| 56 | 55 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ∈ Fin → ((𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦}) ↔ ((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}))) |
| 57 | 56 | exbidv 1921 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ Fin →
(∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦}) ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}))) |
| 58 | 6, 57 | bitrid 283 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}))) |
| 59 | | anass 468 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ (𝑦 ∈ 𝐴 ∧ ({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}))) |
| 60 | 59 | exbii 1848 |
. . . . . . . . . 10
⊢
(∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}))) |
| 61 | | exsimpr 1869 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦})) → ∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦})) |
| 62 | 60, 61 | sylbi 217 |
. . . . . . . . 9
⊢
(∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) → ∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦})) |
| 63 | 58, 62 | biimtrdi 253 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → ∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}))) |
| 64 | | ancom 460 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇)) |
| 65 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑢 = {𝑦} → (𝑢 ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
| 66 | 65 | pm5.32i 574 |
. . . . . . . . . 10
⊢ ((𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇)) |
| 67 | 64, 66 | bitr4i 278 |
. . . . . . . . 9
⊢ (({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇)) |
| 68 | 67 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇)) |
| 69 | 63, 68 | imbitrdi 251 |
. . . . . . 7
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → ∃𝑦(𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇))) |
| 70 | | exsimpr 1869 |
. . . . . . 7
⊢
(∃𝑦(𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇) → ∃𝑦 𝑢 ∈ 𝑇) |
| 71 | 69, 70 | syl6 35 |
. . . . . 6
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → ∃𝑦 𝑢 ∈ 𝑇)) |
| 72 | | ax5e 1912 |
. . . . . 6
⊢
(∃𝑦 𝑢 ∈ 𝑇 → 𝑢 ∈ 𝑇) |
| 73 | 71, 72 | syl6 35 |
. . . . 5
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → 𝑢 ∈ 𝑇)) |
| 74 | 1, 2, 3, 73 | ssrd 3968 |
. . . 4
⊢ (¬
𝐴 ∈ Fin → {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ⊆ 𝑇) |
| 75 | | eqid 2736 |
. . . . 5
⊢ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} = {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} |
| 76 | 75 | dissneq 37364 |
. . . 4
⊢ (({𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ⊆ 𝑇 ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴) |
| 77 | 74, 76 | sylan 580 |
. . 3
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴) |
| 78 | | nfielex 9284 |
. . . . 5
⊢ (¬
𝐴 ∈ Fin →
∃𝑦 𝑦 ∈ 𝐴) |
| 79 | 78 | adantr 480 |
. . . 4
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 ∈ 𝐴) |
| 80 | | difss 4116 |
. . . . . . 7
⊢ (𝐴 ∖ {𝑦}) ⊆ 𝐴 |
| 81 | | elfvex 6919 |
. . . . . . . 8
⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ V) |
| 82 | | difexg 5304 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 ∖ {𝑦}) ∈ V) |
| 83 | | elpwg 4583 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝑦}) ∈ V → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴)) |
| 84 | 81, 82, 83 | 3syl 18 |
. . . . . . 7
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴)) |
| 85 | 80, 84 | mpbiri 258 |
. . . . . 6
⊢ (𝑇 ∈ (TopOn‘𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴) |
| 86 | 85 | adantl 481 |
. . . . 5
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴) |
| 87 | | difinf 9326 |
. . . . . . . . . . . 12
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑦} ∈ Fin) → ¬
(𝐴 ∖ {𝑦}) ∈ Fin) |
| 88 | 17, 87 | mpan2 691 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ∈ Fin → ¬
(𝐴 ∖ {𝑦}) ∈ Fin) |
| 89 | | 0fi 9061 |
. . . . . . . . . . . 12
⊢ ∅
∈ Fin |
| 90 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ {𝑦}) = ∅ → ((𝐴 ∖ {𝑦}) ∈ Fin ↔ ∅ ∈
Fin)) |
| 91 | 89, 90 | mpbiri 258 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ {𝑦}) = ∅ → (𝐴 ∖ {𝑦}) ∈ Fin) |
| 92 | 88, 91 | nsyl 140 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ Fin → ¬
(𝐴 ∖ {𝑦}) = ∅) |
| 93 | 92 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = ∅) |
| 94 | | vsnid 4644 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ {𝑦} |
| 95 | | inelcm 4445 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ {𝑦}) → (𝐴 ∩ {𝑦}) ≠ ∅) |
| 96 | 94, 95 | mpan2 691 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐴 → (𝐴 ∩ {𝑦}) ≠ ∅) |
| 97 | | disj4 4439 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∩ {𝑦}) = ∅ ↔ ¬ (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
| 98 | 97 | necon2abii 2983 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ (𝐴 ∩ {𝑦}) ≠ ∅) |
| 99 | 96, 98 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
| 100 | 99 | pssned 4081 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (𝐴 ∖ {𝑦}) ≠ 𝐴) |
| 101 | 100 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (𝐴 ∖ {𝑦}) ≠ 𝐴) |
| 102 | 101 | neneqd 2938 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = 𝐴) |
| 103 | 93, 102 | jca 511 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴)) |
| 104 | | pm4.56 990 |
. . . . . . . 8
⊢ ((¬
(𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴) ↔ ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) |
| 105 | 103, 104 | sylib 218 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) |
| 106 | | difeq2 4100 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦}))) |
| 107 | 106 | eleq1d 2820 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)) |
| 108 | 107 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (¬ (𝐴 ∖ 𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)) |
| 109 | | eqeq1 2740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = ∅ ↔ (𝐴 ∖ {𝑦}) = ∅)) |
| 110 | | eqeq1 2740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = 𝐴 ↔ (𝐴 ∖ {𝑦}) = 𝐴)) |
| 111 | 109, 110 | orbi12d 918 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
| 112 | 108, 111 | orbi12d 918 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
| 113 | 112, 27 | elrab2 3679 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
| 114 | 85 | biantrurd 532 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))) |
| 115 | 113, 114 | bitr4id 290 |
. . . . . . . . 9
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
| 116 | | dfin4 4258 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ {𝑦}) = (𝐴 ∖ (𝐴 ∖ {𝑦})) |
| 117 | | inss2 4218 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ {𝑦}) ⊆ {𝑦} |
| 118 | | ssfi 9192 |
. . . . . . . . . . . 12
⊢ (({𝑦} ∈ Fin ∧ (𝐴 ∩ {𝑦}) ⊆ {𝑦}) → (𝐴 ∩ {𝑦}) ∈ Fin) |
| 119 | 17, 117, 118 | mp2an 692 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ {𝑦}) ∈ Fin |
| 120 | 116, 119 | eqeltrri 2832 |
. . . . . . . . . 10
⊢ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin |
| 121 | | biortn 937 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin → (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
| 122 | 120, 121 | ax-mp 5 |
. . . . . . . . 9
⊢ (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
| 123 | 115, 122 | bitr4di 289 |
. . . . . . . 8
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
| 124 | 123 | ad2antll 729 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
| 125 | 105, 124 | mtbird 325 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) |
| 126 | 125 | expcom 413 |
. . . . 5
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦 ∈ 𝐴 → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇)) |
| 127 | | nelneq2 2860 |
. . . . . 6
⊢ (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝒫 𝐴 = 𝑇) |
| 128 | | eqcom 2743 |
. . . . . 6
⊢ (𝑇 = 𝒫 𝐴 ↔ 𝒫 𝐴 = 𝑇) |
| 129 | 127, 128 | sylnibr 329 |
. . . . 5
⊢ (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝑇 = 𝒫 𝐴) |
| 130 | 86, 126, 129 | syl6an 684 |
. . . 4
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦 ∈ 𝐴 → ¬ 𝑇 = 𝒫 𝐴)) |
| 131 | 79, 130 | exellimddv 37368 |
. . 3
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ¬ 𝑇 = 𝒫 𝐴) |
| 132 | 77, 131 | pm2.65da 816 |
. 2
⊢ (¬
𝐴 ∈ Fin → ¬
𝑇 ∈ (TopOn‘𝐴)) |
| 133 | 132 | con4i 114 |
1
⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |