Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑢 ¬ 𝐴 ∈ Fin |
2 | | nfab1 2908 |
. . . . 5
⊢
Ⅎ𝑢{𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} |
3 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑢𝑇 |
4 | | abid 2719 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ↔ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}) |
5 | | df-rex 3069 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝐴 𝑢 = {𝑦} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦})) |
6 | 4, 5 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦})) |
7 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ {𝑦} = {𝑦} |
8 | | snex 5349 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑦} ∈ V |
9 | | snelpwi 5354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) |
10 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = {𝑦} → (𝑥 ∈ 𝒫 𝐴 ↔ {𝑦} ∈ 𝒫 𝐴)) |
11 | 9, 10 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = {𝑦} → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
12 | 11 | imdistani 568 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)) |
13 | 12 | anim2i 616 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((¬
𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴)) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))) |
14 | 13 | 3impb 1113 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))) |
15 | | 3anass 1093 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))) |
16 | 14, 15 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)) |
17 | | snfi 8788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {𝑦} ∈ Fin |
18 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) |
19 | 17, 18 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
20 | | difinf 9014 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 ∈ Fin) → ¬ (𝐴 ∖ 𝑥) ∈ Fin) |
21 | 19, 20 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → ¬ (𝐴 ∖ 𝑥) ∈ Fin) |
22 | 21 | orcd 869 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
23 | 22 | anim2i 616 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦})) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
24 | 23 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
25 | 24 | 3impa 1108 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
26 | 16, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
27 | | topdifinf.t |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
28 | 27 | rabeq2i 3412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
29 | 26, 28 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝑇) |
30 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = {𝑦} → (𝑥 ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
31 | 30 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
32 | 29, 31 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
33 | 32 | sbcth 3726 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑦} ∈ V → [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇)) |
34 | 8, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
[{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
35 | | sbcimg 3762 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇))) |
36 | 8, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)) |
37 | 34, 36 | mpbi 229 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇) |
38 | | sbc3an 3782 |
. . . . . . . . . . . . . . . . . 18
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) ↔ ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
39 | | sbcg 3791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin)) |
40 | 8, 39 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin) |
41 | 40 | 3anbi1i 1155 |
. . . . . . . . . . . . . . . . . 18
⊢
(([{𝑦} /
𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
42 | | eqsbc1 3760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦})) |
43 | 8, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦}) |
44 | 43 | 3anbi2i 1156 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝐴 ∈ Fin ∧
[{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
45 | 38, 41, 44 | 3bitri 296 |
. . . . . . . . . . . . . . . . 17
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴)) |
46 | | sbcg 3791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
47 | 8, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
([{𝑦} / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
48 | 47 | 3anbi3i 1157 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦 ∈ 𝐴)) |
49 | 45, 48 | bitri 274 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑦} / 𝑥](¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦 ∈ 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦 ∈ 𝐴)) |
50 | | sbcg 3791 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑦} ∈ V →
([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
51 | 8, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇) |
52 | 37, 49, 51 | 3imtr3i 290 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
53 | 7, 52 | mp3an2 1447 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑦 ∈ 𝐴) → {𝑦} ∈ 𝑇) |
54 | 53 | ex 412 |
. . . . . . . . . . . . 13
⊢ (¬
𝐴 ∈ Fin → (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝑇)) |
55 | 54 | pm4.71d 561 |
. . . . . . . . . . . 12
⊢ (¬
𝐴 ∈ Fin → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇))) |
56 | 55 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ∈ Fin → ((𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦}) ↔ ((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}))) |
57 | 56 | exbidv 1925 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ Fin →
(∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑢 = {𝑦}) ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}))) |
58 | 6, 57 | syl5bb 282 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}))) |
59 | | anass 468 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ (𝑦 ∈ 𝐴 ∧ ({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}))) |
60 | 59 | exbii 1851 |
. . . . . . . . . 10
⊢
(∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}))) |
61 | | exsimpr 1873 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦})) → ∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦})) |
62 | 60, 61 | sylbi 216 |
. . . . . . . . 9
⊢
(∃𝑦((𝑦 ∈ 𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) → ∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦})) |
63 | 58, 62 | syl6bi 252 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → ∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}))) |
64 | | ancom 460 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇)) |
65 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑢 = {𝑦} → (𝑢 ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)) |
66 | 65 | pm5.32i 574 |
. . . . . . . . . 10
⊢ ((𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇)) |
67 | 64, 66 | bitr4i 277 |
. . . . . . . . 9
⊢ (({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇)) |
68 | 67 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑦({𝑦} ∈ 𝑇 ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇)) |
69 | 63, 68 | syl6ib 250 |
. . . . . . 7
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → ∃𝑦(𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇))) |
70 | | exsimpr 1873 |
. . . . . . 7
⊢
(∃𝑦(𝑢 = {𝑦} ∧ 𝑢 ∈ 𝑇) → ∃𝑦 𝑢 ∈ 𝑇) |
71 | 69, 70 | syl6 35 |
. . . . . 6
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → ∃𝑦 𝑢 ∈ 𝑇)) |
72 | | ax5e 1916 |
. . . . . 6
⊢
(∃𝑦 𝑢 ∈ 𝑇 → 𝑢 ∈ 𝑇) |
73 | 71, 72 | syl6 35 |
. . . . 5
⊢ (¬
𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} → 𝑢 ∈ 𝑇)) |
74 | 1, 2, 3, 73 | ssrd 3922 |
. . . 4
⊢ (¬
𝐴 ∈ Fin → {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ⊆ 𝑇) |
75 | | eqid 2738 |
. . . . 5
⊢ {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} = {𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} |
76 | 75 | dissneq 35439 |
. . . 4
⊢ (({𝑢 ∣ ∃𝑦 ∈ 𝐴 𝑢 = {𝑦}} ⊆ 𝑇 ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴) |
77 | 74, 76 | sylan 579 |
. . 3
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴) |
78 | | nfielex 8976 |
. . . . 5
⊢ (¬
𝐴 ∈ Fin →
∃𝑦 𝑦 ∈ 𝐴) |
79 | 78 | adantr 480 |
. . . 4
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦 ∈ 𝐴) |
80 | | difss 4062 |
. . . . . . 7
⊢ (𝐴 ∖ {𝑦}) ⊆ 𝐴 |
81 | | elfvex 6789 |
. . . . . . . 8
⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ V) |
82 | | difexg 5246 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 ∖ {𝑦}) ∈ V) |
83 | | elpwg 4533 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝑦}) ∈ V → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴)) |
84 | 81, 82, 83 | 3syl 18 |
. . . . . . 7
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴)) |
85 | 80, 84 | mpbiri 257 |
. . . . . 6
⊢ (𝑇 ∈ (TopOn‘𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴) |
86 | 85 | adantl 481 |
. . . . 5
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴) |
87 | | difinf 9014 |
. . . . . . . . . . . 12
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑦} ∈ Fin) → ¬
(𝐴 ∖ {𝑦}) ∈ Fin) |
88 | 17, 87 | mpan2 687 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ∈ Fin → ¬
(𝐴 ∖ {𝑦}) ∈ Fin) |
89 | | 0fin 8916 |
. . . . . . . . . . . 12
⊢ ∅
∈ Fin |
90 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ {𝑦}) = ∅ → ((𝐴 ∖ {𝑦}) ∈ Fin ↔ ∅ ∈
Fin)) |
91 | 89, 90 | mpbiri 257 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ {𝑦}) = ∅ → (𝐴 ∖ {𝑦}) ∈ Fin) |
92 | 88, 91 | nsyl 140 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ Fin → ¬
(𝐴 ∖ {𝑦}) = ∅) |
93 | 92 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = ∅) |
94 | | vsnid 4595 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ {𝑦} |
95 | | inelcm 4395 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ {𝑦}) → (𝐴 ∩ {𝑦}) ≠ ∅) |
96 | 94, 95 | mpan2 687 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐴 → (𝐴 ∩ {𝑦}) ≠ ∅) |
97 | | disj4 4389 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∩ {𝑦}) = ∅ ↔ ¬ (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
98 | 97 | necon2abii 2993 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ (𝐴 ∩ {𝑦}) ≠ ∅) |
99 | 96, 98 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
100 | 99 | pssned 4029 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (𝐴 ∖ {𝑦}) ≠ 𝐴) |
101 | 100 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (𝐴 ∖ {𝑦}) ≠ 𝐴) |
102 | 101 | neneqd 2947 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = 𝐴) |
103 | 93, 102 | jca 511 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴)) |
104 | | pm4.56 985 |
. . . . . . . 8
⊢ ((¬
(𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴) ↔ ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) |
105 | 103, 104 | sylib 217 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) |
106 | | difeq2 4047 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦}))) |
107 | 106 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)) |
108 | 107 | notbid 317 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (¬ (𝐴 ∖ 𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin)) |
109 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = ∅ ↔ (𝐴 ∖ {𝑦}) = ∅)) |
110 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = 𝐴 ↔ (𝐴 ∖ {𝑦}) = 𝐴)) |
111 | 109, 110 | orbi12d 915 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
112 | 108, 111 | orbi12d 915 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
113 | 112, 27 | elrab2 3620 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
114 | 85 | biantrurd 532 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))) |
115 | 113, 114 | bitr4id 289 |
. . . . . . . . 9
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
116 | | dfin4 4198 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ {𝑦}) = (𝐴 ∖ (𝐴 ∖ {𝑦})) |
117 | | inss2 4160 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ {𝑦}) ⊆ {𝑦} |
118 | | ssfi 8918 |
. . . . . . . . . . . 12
⊢ (({𝑦} ∈ Fin ∧ (𝐴 ∩ {𝑦}) ⊆ {𝑦}) → (𝐴 ∩ {𝑦}) ∈ Fin) |
119 | 17, 117, 118 | mp2an 688 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ {𝑦}) ∈ Fin |
120 | 116, 119 | eqeltrri 2836 |
. . . . . . . . . 10
⊢ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin |
121 | | biortn 934 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin → (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))) |
122 | 120, 121 | ax-mp 5 |
. . . . . . . . 9
⊢ (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
123 | 115, 122 | bitr4di 288 |
. . . . . . . 8
⊢ (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
124 | 123 | ad2antll 725 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))) |
125 | 105, 124 | mtbird 324 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) |
126 | 125 | expcom 413 |
. . . . 5
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦 ∈ 𝐴 → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇)) |
127 | | nelneq2 2864 |
. . . . . 6
⊢ (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝒫 𝐴 = 𝑇) |
128 | | eqcom 2745 |
. . . . . 6
⊢ (𝑇 = 𝒫 𝐴 ↔ 𝒫 𝐴 = 𝑇) |
129 | 127, 128 | sylnibr 328 |
. . . . 5
⊢ (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝑇 = 𝒫 𝐴) |
130 | 86, 126, 129 | syl6an 680 |
. . . 4
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦 ∈ 𝐴 → ¬ 𝑇 = 𝒫 𝐴)) |
131 | 79, 130 | exellimddv 35443 |
. . 3
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ¬ 𝑇 = 𝒫 𝐴) |
132 | 77, 131 | pm2.65da 813 |
. 2
⊢ (¬
𝐴 ∈ Fin → ¬
𝑇 ∈ (TopOn‘𝐴)) |
133 | 132 | con4i 114 |
1
⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |