Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinffinlem Structured version   Visualization version   GIF version

Theorem topdifinffinlem 37370
Description: This is the core of the proof of topdifinffin 37371, but to avoid the distinct variables on the definition, we need to split this proof into two. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinffinlem (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem topdifinffinlem
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑢 ¬ 𝐴 ∈ Fin
2 nfab1 2901 . . . . 5 𝑢{𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}}
3 nfcv 2899 . . . . 5 𝑢𝑇
4 abid 2718 . . . . . . . . . . 11 (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦𝐴 𝑢 = {𝑦})
5 df-rex 3062 . . . . . . . . . . 11 (∃𝑦𝐴 𝑢 = {𝑦} ↔ ∃𝑦(𝑦𝐴𝑢 = {𝑦}))
64, 5bitri 275 . . . . . . . . . 10 (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦(𝑦𝐴𝑢 = {𝑦}))
7 eqid 2736 . . . . . . . . . . . . . . 15 {𝑦} = {𝑦}
8 vsnex 5409 . . . . . . . . . . . . . . . . . 18 {𝑦} ∈ V
9 snelpwi 5423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
10 eleq1 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = {𝑦} → (𝑥 ∈ 𝒫 𝐴 ↔ {𝑦} ∈ 𝒫 𝐴))
119, 10imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = {𝑦} → (𝑦𝐴𝑥 ∈ 𝒫 𝐴))
1211imdistani 568 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))
1312anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . 24 ((¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑦𝐴)) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
14133impb 1114 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
15 3anass 1094 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
1614, 15sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))
17 snfi 9062 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝑦} ∈ Fin
18 eleq1 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
20 difinf 9326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ 𝐴 ∈ Fin ∧ 𝑥 ∈ Fin) → ¬ (𝐴𝑥) ∈ Fin)
2119, 20sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → ¬ (𝐴𝑥) ∈ Fin)
2221orcd 873 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2322anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ 𝒫 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦})) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2423ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 (((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
25243impa 1109 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2616, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
27 topdifinf.t . . . . . . . . . . . . . . . . . . . . . 22 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
2827reqabi 3444 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2926, 28sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → 𝑥𝑇)
30 eleq1 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = {𝑦} → (𝑥𝑇 ↔ {𝑦} ∈ 𝑇))
31303ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥𝑇 ↔ {𝑦} ∈ 𝑇))
3229, 31mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
3332sbcth 3785 . . . . . . . . . . . . . . . . . 18 ({𝑦} ∈ V → [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇))
348, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
35 sbcimg 3819 . . . . . . . . . . . . . . . . . 18 ({𝑦} ∈ V → ([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)))
368, 35ax-mp 5 . . . . . . . . . . . . . . . . 17 ([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇))
3734, 36mpbi 230 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)
38 sbc3an 3835 . . . . . . . . . . . . . . . . . 18 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
39 sbcg 3843 . . . . . . . . . . . . . . . . . . . 20 ({𝑦} ∈ V → ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin))
408, 39ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin)
41403anbi1i 1157 . . . . . . . . . . . . . . . . . 18 (([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
42 eqsbc1 3817 . . . . . . . . . . . . . . . . . . . 20 ({𝑦} ∈ V → ([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦}))
438, 42ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦})
44433anbi2i 1158 . . . . . . . . . . . . . . . . . 18 ((¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
4538, 41, 443bitri 297 . . . . . . . . . . . . . . . . 17 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
46 sbcg 3843 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ∈ V → ([{𝑦} / 𝑥]𝑦𝐴𝑦𝐴))
478, 46ax-mp 5 . . . . . . . . . . . . . . . . . 18 ([{𝑦} / 𝑥]𝑦𝐴𝑦𝐴)
48473anbi3i 1159 . . . . . . . . . . . . . . . . 17 ((¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴))
4945, 48bitri 275 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴))
50 sbcg 3843 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ V → ([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇))
518, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)
5237, 49, 513imtr3i 291 . . . . . . . . . . . . . . 15 ((¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
537, 52mp3an2 1451 . . . . . . . . . . . . . 14 ((¬ 𝐴 ∈ Fin ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
5453ex 412 . . . . . . . . . . . . 13 𝐴 ∈ Fin → (𝑦𝐴 → {𝑦} ∈ 𝑇))
5554pm4.71d 561 . . . . . . . . . . . 12 𝐴 ∈ Fin → (𝑦𝐴 ↔ (𝑦𝐴 ∧ {𝑦} ∈ 𝑇)))
5655anbi1d 631 . . . . . . . . . . 11 𝐴 ∈ Fin → ((𝑦𝐴𝑢 = {𝑦}) ↔ ((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
5756exbidv 1921 . . . . . . . . . 10 𝐴 ∈ Fin → (∃𝑦(𝑦𝐴𝑢 = {𝑦}) ↔ ∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
586, 57bitrid 283 . . . . . . . . 9 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
59 anass 468 . . . . . . . . . . 11 (((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ (𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})))
6059exbii 1848 . . . . . . . . . 10 (∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})))
61 exsimpr 1869 . . . . . . . . . 10 (∃𝑦(𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})) → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}))
6260, 61sylbi 217 . . . . . . . . 9 (∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}))
6358, 62biimtrdi 253 . . . . . . . 8 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦})))
64 ancom 460 . . . . . . . . . 10 (({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇))
65 eleq1 2823 . . . . . . . . . . 11 (𝑢 = {𝑦} → (𝑢𝑇 ↔ {𝑦} ∈ 𝑇))
6665pm5.32i 574 . . . . . . . . . 10 ((𝑢 = {𝑦} ∧ 𝑢𝑇) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇))
6764, 66bitr4i 278 . . . . . . . . 9 (({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ 𝑢𝑇))
6867exbii 1848 . . . . . . . 8 (∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ ∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇))
6963, 68imbitrdi 251 . . . . . . 7 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇)))
70 exsimpr 1869 . . . . . . 7 (∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇) → ∃𝑦 𝑢𝑇)
7169, 70syl6 35 . . . . . 6 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦 𝑢𝑇))
72 ax5e 1912 . . . . . 6 (∃𝑦 𝑢𝑇𝑢𝑇)
7371, 72syl6 35 . . . . 5 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → 𝑢𝑇))
741, 2, 3, 73ssrd 3968 . . . 4 𝐴 ∈ Fin → {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ⊆ 𝑇)
75 eqid 2736 . . . . 5 {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} = {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}}
7675dissneq 37364 . . . 4 (({𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ⊆ 𝑇𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴)
7774, 76sylan 580 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴)
78 nfielex 9284 . . . . 5 𝐴 ∈ Fin → ∃𝑦 𝑦𝐴)
7978adantr 480 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦𝐴)
80 difss 4116 . . . . . . 7 (𝐴 ∖ {𝑦}) ⊆ 𝐴
81 elfvex 6919 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ V)
82 difexg 5304 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ {𝑦}) ∈ V)
83 elpwg 4583 . . . . . . . 8 ((𝐴 ∖ {𝑦}) ∈ V → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴))
8481, 82, 833syl 18 . . . . . . 7 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴))
8580, 84mpbiri 258 . . . . . 6 (𝑇 ∈ (TopOn‘𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴)
8685adantl 481 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴)
87 difinf 9326 . . . . . . . . . . . 12 ((¬ 𝐴 ∈ Fin ∧ {𝑦} ∈ Fin) → ¬ (𝐴 ∖ {𝑦}) ∈ Fin)
8817, 87mpan2 691 . . . . . . . . . . 11 𝐴 ∈ Fin → ¬ (𝐴 ∖ {𝑦}) ∈ Fin)
89 0fi 9061 . . . . . . . . . . . 12 ∅ ∈ Fin
90 eleq1 2823 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑦}) = ∅ → ((𝐴 ∖ {𝑦}) ∈ Fin ↔ ∅ ∈ Fin))
9189, 90mpbiri 258 . . . . . . . . . . 11 ((𝐴 ∖ {𝑦}) = ∅ → (𝐴 ∖ {𝑦}) ∈ Fin)
9288, 91nsyl 140 . . . . . . . . . 10 𝐴 ∈ Fin → ¬ (𝐴 ∖ {𝑦}) = ∅)
9392ad2antrl 728 . . . . . . . . 9 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = ∅)
94 vsnid 4644 . . . . . . . . . . . . . 14 𝑦 ∈ {𝑦}
95 inelcm 4445 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑦 ∈ {𝑦}) → (𝐴 ∩ {𝑦}) ≠ ∅)
9694, 95mpan2 691 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝐴 ∩ {𝑦}) ≠ ∅)
97 disj4 4439 . . . . . . . . . . . . . 14 ((𝐴 ∩ {𝑦}) = ∅ ↔ ¬ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
9897necon2abii 2983 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ (𝐴 ∩ {𝑦}) ≠ ∅)
9996, 98sylibr 234 . . . . . . . . . . . 12 (𝑦𝐴 → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
10099pssned 4081 . . . . . . . . . . 11 (𝑦𝐴 → (𝐴 ∖ {𝑦}) ≠ 𝐴)
101100adantr 480 . . . . . . . . . 10 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (𝐴 ∖ {𝑦}) ≠ 𝐴)
102101neneqd 2938 . . . . . . . . 9 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = 𝐴)
10393, 102jca 511 . . . . . . . 8 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴))
104 pm4.56 990 . . . . . . . 8 ((¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴) ↔ ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))
105103, 104sylib 218 . . . . . . 7 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))
106 difeq2 4100 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
107106eleq1d 2820 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
108107notbid 318 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∖ {𝑦}) → (¬ (𝐴𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
109 eqeq1 2740 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = ∅ ↔ (𝐴 ∖ {𝑦}) = ∅))
110 eqeq1 2740 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = 𝐴 ↔ (𝐴 ∖ {𝑦}) = 𝐴))
111109, 110orbi12d 918 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
112108, 111orbi12d 918 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
113112, 27elrab2 3679 . . . . . . . . . 10 ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
11485biantrurd 532 . . . . . . . . . 10 (𝑇 ∈ (TopOn‘𝐴) → ((¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))))
115113, 114bitr4id 290 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
116 dfin4 4258 . . . . . . . . . . 11 (𝐴 ∩ {𝑦}) = (𝐴 ∖ (𝐴 ∖ {𝑦}))
117 inss2 4218 . . . . . . . . . . . 12 (𝐴 ∩ {𝑦}) ⊆ {𝑦}
118 ssfi 9192 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∩ {𝑦}) ⊆ {𝑦}) → (𝐴 ∩ {𝑦}) ∈ Fin)
11917, 117, 118mp2an 692 . . . . . . . . . . 11 (𝐴 ∩ {𝑦}) ∈ Fin
120116, 119eqeltrri 2832 . . . . . . . . . 10 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
121 biortn 937 . . . . . . . . . 10 ((𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin → (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
122120, 121ax-mp 5 . . . . . . . . 9 (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
123115, 122bitr4di 289 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
124123ad2antll 729 . . . . . . 7 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
125105, 124mtbird 325 . . . . . 6 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇)
126125expcom 413 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦𝐴 → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇))
127 nelneq2 2860 . . . . . 6 (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝒫 𝐴 = 𝑇)
128 eqcom 2743 . . . . . 6 (𝑇 = 𝒫 𝐴 ↔ 𝒫 𝐴 = 𝑇)
129127, 128sylnibr 329 . . . . 5 (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝑇 = 𝒫 𝐴)
13086, 126, 129syl6an 684 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦𝐴 → ¬ 𝑇 = 𝒫 𝐴))
13179, 130exellimddv 37368 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ¬ 𝑇 = 𝒫 𝐴)
13277, 131pm2.65da 816 . 2 𝐴 ∈ Fin → ¬ 𝑇 ∈ (TopOn‘𝐴))
133132con4i 114 1 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wrex 3061  {crab 3420  Vcvv 3464  [wsbc 3770  cdif 3928  cin 3930  wss 3931  wpss 3932  c0 4313  𝒫 cpw 4580  {csn 4606  cfv 6536  Fincfn 8964  TopOnctopon 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-fin 8968  df-topgen 17462  df-top 22837  df-topon 22854
This theorem is referenced by:  topdifinffin  37371
  Copyright terms: Public domain W3C validator