Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinffinlem Structured version   Visualization version   GIF version

Theorem topdifinffinlem 37335
Description: This is the core of the proof of topdifinffin 37336, but to avoid the distinct variables on the definition, we need to split this proof into two. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinffinlem (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem topdifinffinlem
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑢 ¬ 𝐴 ∈ Fin
2 nfab1 2893 . . . . 5 𝑢{𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}}
3 nfcv 2891 . . . . 5 𝑢𝑇
4 abid 2711 . . . . . . . . . . 11 (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦𝐴 𝑢 = {𝑦})
5 df-rex 3054 . . . . . . . . . . 11 (∃𝑦𝐴 𝑢 = {𝑦} ↔ ∃𝑦(𝑦𝐴𝑢 = {𝑦}))
64, 5bitri 275 . . . . . . . . . 10 (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦(𝑦𝐴𝑢 = {𝑦}))
7 eqid 2729 . . . . . . . . . . . . . . 15 {𝑦} = {𝑦}
8 vsnex 5389 . . . . . . . . . . . . . . . . . 18 {𝑦} ∈ V
9 snelpwi 5403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
10 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = {𝑦} → (𝑥 ∈ 𝒫 𝐴 ↔ {𝑦} ∈ 𝒫 𝐴))
119, 10imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = {𝑦} → (𝑦𝐴𝑥 ∈ 𝒫 𝐴))
1211imdistani 568 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))
1312anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . 24 ((¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑦𝐴)) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
14133impb 1114 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
15 3anass 1094 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ (𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴)))
1614, 15sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴))
17 snfi 9014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝑦} ∈ Fin
18 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
20 difinf 9260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ 𝐴 ∈ Fin ∧ 𝑥 ∈ Fin) → ¬ (𝐴𝑥) ∈ Fin)
2119, 20sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → ¬ (𝐴𝑥) ∈ Fin)
2221orcd 873 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) → (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2322anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ 𝒫 𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦})) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2423ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 (((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦}) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
25243impa 1109 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2616, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
27 topdifinf.t . . . . . . . . . . . . . . . . . . . . . 22 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
2827reqabi 3429 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2926, 28sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → 𝑥𝑇)
30 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = {𝑦} → (𝑥𝑇 ↔ {𝑦} ∈ 𝑇))
31303ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → (𝑥𝑇 ↔ {𝑦} ∈ 𝑇))
3229, 31mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
3332sbcth 3768 . . . . . . . . . . . . . . . . . 18 ({𝑦} ∈ V → [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇))
348, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 [{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
35 sbcimg 3802 . . . . . . . . . . . . . . . . . 18 ({𝑦} ∈ V → ([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)))
368, 35ax-mp 5 . . . . . . . . . . . . . . . . 17 ([{𝑦} / 𝑥]((¬ 𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇) ↔ ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇))
3734, 36mpbi 230 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) → [{𝑦} / 𝑥]{𝑦} ∈ 𝑇)
38 sbc3an 3818 . . . . . . . . . . . . . . . . . 18 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
39 sbcg 3826 . . . . . . . . . . . . . . . . . . . 20 ({𝑦} ∈ V → ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin))
408, 39ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ∈ Fin)
41403anbi1i 1157 . . . . . . . . . . . . . . . . . 18 (([{𝑦} / 𝑥] ¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
42 eqsbc1 3800 . . . . . . . . . . . . . . . . . . . 20 ({𝑦} ∈ V → ([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦}))
438, 42ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([{𝑦} / 𝑥]𝑥 = {𝑦} ↔ {𝑦} = {𝑦})
44433anbi2i 1158 . . . . . . . . . . . . . . . . . 18 ((¬ 𝐴 ∈ Fin ∧ [{𝑦} / 𝑥]𝑥 = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
4538, 41, 443bitri 297 . . . . . . . . . . . . . . . . 17 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴))
46 sbcg 3826 . . . . . . . . . . . . . . . . . . 19 ({𝑦} ∈ V → ([{𝑦} / 𝑥]𝑦𝐴𝑦𝐴))
478, 46ax-mp 5 . . . . . . . . . . . . . . . . . 18 ([{𝑦} / 𝑥]𝑦𝐴𝑦𝐴)
48473anbi3i 1159 . . . . . . . . . . . . . . . . 17 ((¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ [{𝑦} / 𝑥]𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴))
4945, 48bitri 275 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]𝐴 ∈ Fin ∧ 𝑥 = {𝑦} ∧ 𝑦𝐴) ↔ (¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴))
50 sbcg 3826 . . . . . . . . . . . . . . . . 17 ({𝑦} ∈ V → ([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇))
518, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ([{𝑦} / 𝑥]{𝑦} ∈ 𝑇 ↔ {𝑦} ∈ 𝑇)
5237, 49, 513imtr3i 291 . . . . . . . . . . . . . . 15 ((¬ 𝐴 ∈ Fin ∧ {𝑦} = {𝑦} ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
537, 52mp3an2 1451 . . . . . . . . . . . . . 14 ((¬ 𝐴 ∈ Fin ∧ 𝑦𝐴) → {𝑦} ∈ 𝑇)
5453ex 412 . . . . . . . . . . . . 13 𝐴 ∈ Fin → (𝑦𝐴 → {𝑦} ∈ 𝑇))
5554pm4.71d 561 . . . . . . . . . . . 12 𝐴 ∈ Fin → (𝑦𝐴 ↔ (𝑦𝐴 ∧ {𝑦} ∈ 𝑇)))
5655anbi1d 631 . . . . . . . . . . 11 𝐴 ∈ Fin → ((𝑦𝐴𝑢 = {𝑦}) ↔ ((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
5756exbidv 1921 . . . . . . . . . 10 𝐴 ∈ Fin → (∃𝑦(𝑦𝐴𝑢 = {𝑦}) ↔ ∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
586, 57bitrid 283 . . . . . . . . 9 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ↔ ∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦})))
59 anass 468 . . . . . . . . . . 11 (((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ (𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})))
6059exbii 1848 . . . . . . . . . 10 (∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) ↔ ∃𝑦(𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})))
61 exsimpr 1869 . . . . . . . . . 10 (∃𝑦(𝑦𝐴 ∧ ({𝑦} ∈ 𝑇𝑢 = {𝑦})) → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}))
6260, 61sylbi 217 . . . . . . . . 9 (∃𝑦((𝑦𝐴 ∧ {𝑦} ∈ 𝑇) ∧ 𝑢 = {𝑦}) → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}))
6358, 62biimtrdi 253 . . . . . . . 8 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦})))
64 ancom 460 . . . . . . . . . 10 (({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇))
65 eleq1 2816 . . . . . . . . . . 11 (𝑢 = {𝑦} → (𝑢𝑇 ↔ {𝑦} ∈ 𝑇))
6665pm5.32i 574 . . . . . . . . . 10 ((𝑢 = {𝑦} ∧ 𝑢𝑇) ↔ (𝑢 = {𝑦} ∧ {𝑦} ∈ 𝑇))
6764, 66bitr4i 278 . . . . . . . . 9 (({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ (𝑢 = {𝑦} ∧ 𝑢𝑇))
6867exbii 1848 . . . . . . . 8 (∃𝑦({𝑦} ∈ 𝑇𝑢 = {𝑦}) ↔ ∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇))
6963, 68imbitrdi 251 . . . . . . 7 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇)))
70 exsimpr 1869 . . . . . . 7 (∃𝑦(𝑢 = {𝑦} ∧ 𝑢𝑇) → ∃𝑦 𝑢𝑇)
7169, 70syl6 35 . . . . . 6 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → ∃𝑦 𝑢𝑇))
72 ax5e 1912 . . . . . 6 (∃𝑦 𝑢𝑇𝑢𝑇)
7371, 72syl6 35 . . . . 5 𝐴 ∈ Fin → (𝑢 ∈ {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} → 𝑢𝑇))
741, 2, 3, 73ssrd 3951 . . . 4 𝐴 ∈ Fin → {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ⊆ 𝑇)
75 eqid 2729 . . . . 5 {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} = {𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}}
7675dissneq 37329 . . . 4 (({𝑢 ∣ ∃𝑦𝐴 𝑢 = {𝑦}} ⊆ 𝑇𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴)
7774, 76sylan 580 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → 𝑇 = 𝒫 𝐴)
78 nfielex 9218 . . . . 5 𝐴 ∈ Fin → ∃𝑦 𝑦𝐴)
7978adantr 480 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ∃𝑦 𝑦𝐴)
80 difss 4099 . . . . . . 7 (𝐴 ∖ {𝑦}) ⊆ 𝐴
81 elfvex 6896 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ V)
82 difexg 5284 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ {𝑦}) ∈ V)
83 elpwg 4566 . . . . . . . 8 ((𝐴 ∖ {𝑦}) ∈ V → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴))
8481, 82, 833syl 18 . . . . . . 7 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊆ 𝐴))
8580, 84mpbiri 258 . . . . . 6 (𝑇 ∈ (TopOn‘𝐴) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴)
8685adantl 481 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴)
87 difinf 9260 . . . . . . . . . . . 12 ((¬ 𝐴 ∈ Fin ∧ {𝑦} ∈ Fin) → ¬ (𝐴 ∖ {𝑦}) ∈ Fin)
8817, 87mpan2 691 . . . . . . . . . . 11 𝐴 ∈ Fin → ¬ (𝐴 ∖ {𝑦}) ∈ Fin)
89 0fi 9013 . . . . . . . . . . . 12 ∅ ∈ Fin
90 eleq1 2816 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑦}) = ∅ → ((𝐴 ∖ {𝑦}) ∈ Fin ↔ ∅ ∈ Fin))
9189, 90mpbiri 258 . . . . . . . . . . 11 ((𝐴 ∖ {𝑦}) = ∅ → (𝐴 ∖ {𝑦}) ∈ Fin)
9288, 91nsyl 140 . . . . . . . . . 10 𝐴 ∈ Fin → ¬ (𝐴 ∖ {𝑦}) = ∅)
9392ad2antrl 728 . . . . . . . . 9 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = ∅)
94 vsnid 4627 . . . . . . . . . . . . . 14 𝑦 ∈ {𝑦}
95 inelcm 4428 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑦 ∈ {𝑦}) → (𝐴 ∩ {𝑦}) ≠ ∅)
9694, 95mpan2 691 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝐴 ∩ {𝑦}) ≠ ∅)
97 disj4 4422 . . . . . . . . . . . . . 14 ((𝐴 ∩ {𝑦}) = ∅ ↔ ¬ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
9897necon2abii 2975 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ (𝐴 ∩ {𝑦}) ≠ ∅)
9996, 98sylibr 234 . . . . . . . . . . . 12 (𝑦𝐴 → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
10099pssned 4064 . . . . . . . . . . 11 (𝑦𝐴 → (𝐴 ∖ {𝑦}) ≠ 𝐴)
101100adantr 480 . . . . . . . . . 10 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (𝐴 ∖ {𝑦}) ≠ 𝐴)
102101neneqd 2930 . . . . . . . . 9 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) = 𝐴)
10393, 102jca 511 . . . . . . . 8 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → (¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴))
104 pm4.56 990 . . . . . . . 8 ((¬ (𝐴 ∖ {𝑦}) = ∅ ∧ ¬ (𝐴 ∖ {𝑦}) = 𝐴) ↔ ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))
105103, 104sylib 218 . . . . . . 7 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))
106 difeq2 4083 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 ∖ {𝑦}) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ {𝑦})))
107106eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
108107notbid 318 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∖ {𝑦}) → (¬ (𝐴𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin))
109 eqeq1 2733 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = ∅ ↔ (𝐴 ∖ {𝑦}) = ∅))
110 eqeq1 2733 . . . . . . . . . . . . 13 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 = 𝐴 ↔ (𝐴 ∖ {𝑦}) = 𝐴))
111109, 110orbi12d 918 . . . . . . . . . . . 12 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
112108, 111orbi12d 918 . . . . . . . . . . 11 (𝑥 = (𝐴 ∖ {𝑦}) → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
113112, 27elrab2 3662 . . . . . . . . . 10 ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
11485biantrurd 532 . . . . . . . . . 10 (𝑇 ∈ (TopOn‘𝐴) → ((¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)) ↔ ((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))))
115113, 114bitr4id 290 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
116 dfin4 4241 . . . . . . . . . . 11 (𝐴 ∩ {𝑦}) = (𝐴 ∖ (𝐴 ∖ {𝑦}))
117 inss2 4201 . . . . . . . . . . . 12 (𝐴 ∩ {𝑦}) ⊆ {𝑦}
118 ssfi 9137 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ (𝐴 ∩ {𝑦}) ⊆ {𝑦}) → (𝐴 ∩ {𝑦}) ∈ Fin)
11917, 117, 118mp2an 692 . . . . . . . . . . 11 (𝐴 ∩ {𝑦}) ∈ Fin
120116, 119eqeltrri 2825 . . . . . . . . . 10 (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin
121 biortn 937 . . . . . . . . . 10 ((𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin → (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴))))
122120, 121ax-mp 5 . . . . . . . . 9 (((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴) ↔ (¬ (𝐴 ∖ (𝐴 ∖ {𝑦})) ∈ Fin ∨ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
123115, 122bitr4di 289 . . . . . . . 8 (𝑇 ∈ (TopOn‘𝐴) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
124123ad2antll 729 . . . . . . 7 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ((𝐴 ∖ {𝑦}) ∈ 𝑇 ↔ ((𝐴 ∖ {𝑦}) = ∅ ∨ (𝐴 ∖ {𝑦}) = 𝐴)))
125105, 124mtbird 325 . . . . . 6 ((𝑦𝐴 ∧ (¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴))) → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇)
126125expcom 413 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦𝐴 → ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇))
127 nelneq2 2853 . . . . . 6 (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝒫 𝐴 = 𝑇)
128 eqcom 2736 . . . . . 6 (𝑇 = 𝒫 𝐴 ↔ 𝒫 𝐴 = 𝑇)
129127, 128sylnibr 329 . . . . 5 (((𝐴 ∖ {𝑦}) ∈ 𝒫 𝐴 ∧ ¬ (𝐴 ∖ {𝑦}) ∈ 𝑇) → ¬ 𝑇 = 𝒫 𝐴)
13086, 126, 129syl6an 684 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → (𝑦𝐴 → ¬ 𝑇 = 𝒫 𝐴))
13179, 130exellimddv 37333 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑇 ∈ (TopOn‘𝐴)) → ¬ 𝑇 = 𝒫 𝐴)
13277, 131pm2.65da 816 . 2 𝐴 ∈ Fin → ¬ 𝑇 ∈ (TopOn‘𝐴))
133132con4i 114 1 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  [wsbc 3753  cdif 3911  cin 3913  wss 3914  wpss 3915  c0 4296  𝒫 cpw 4563  {csn 4589  cfv 6511  Fincfn 8918  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-topgen 17406  df-top 22781  df-topon 22798
This theorem is referenced by:  topdifinffin  37336
  Copyright terms: Public domain W3C validator