| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1613 dfer2 8649 ttrclresv 9648 axgroth2 10756 oppgsubm 19277 xrsdsreclb 21356 ordthaus 23305 qtopeu 23637 regr1lem2 23661 isfbas2 23756 isclmp 25031 umgr2edg1 29192 xrge0adddir 33003 isros 34152 bnj964 34927 bnj1033 34953 cusgr3cyclex 35117 dfon2lem7 35771 outsideofcom 36110 linecom 36132 linerflx2 36133 topdifinffinlem 37329 rdgeqoa 37352 ishlat2 39340 lhpex2leN 40001 aks6d1c1rh 42107 sn-isghm 42655 lmbr3v 45737 lmbr3 45739 fourierdlem103 46201 fourierdlem104 46202 issmf 46720 issmff 46726 issmfle 46737 issmfgt 46748 issmfge 46762 grtriproplem 47932 grtrif1o 47935 funcf2lem 49064 |
| Copyright terms: Public domain | W3C validator |