| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1613 dfer2 8649 ttrclresv 9646 axgroth2 10754 oppgsubm 19276 xrsdsreclb 21355 ordthaus 23304 qtopeu 23636 regr1lem2 23660 isfbas2 23755 isclmp 25030 umgr2edg1 29191 xrge0adddir 33002 isros 34151 bnj964 34926 bnj1033 34952 cusgr3cyclex 35116 dfon2lem7 35770 outsideofcom 36109 linecom 36131 linerflx2 36132 topdifinffinlem 37328 rdgeqoa 37351 ishlat2 39339 lhpex2leN 40000 aks6d1c1rh 42106 sn-isghm 42654 lmbr3v 45736 lmbr3 45738 fourierdlem103 46200 fourierdlem104 46201 issmf 46719 issmff 46725 issmfle 46736 issmfgt 46747 issmfge 46761 grtriproplem 47931 grtrif1o 47934 funcf2lem 49063 |
| Copyright terms: Public domain | W3C validator |