| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1613 dfer2 8675 ttrclresv 9677 axgroth2 10785 oppgsubm 19301 xrsdsreclb 21337 ordthaus 23278 qtopeu 23610 regr1lem2 23634 isfbas2 23729 isclmp 25004 umgr2edg1 29145 xrge0adddir 32966 isros 34165 bnj964 34940 bnj1033 34966 cusgr3cyclex 35130 dfon2lem7 35784 outsideofcom 36123 linecom 36145 linerflx2 36146 topdifinffinlem 37342 rdgeqoa 37365 ishlat2 39353 lhpex2leN 40014 aks6d1c1rh 42120 sn-isghm 42668 lmbr3v 45750 lmbr3 45752 fourierdlem103 46214 fourierdlem104 46215 issmf 46733 issmff 46739 issmfle 46750 issmfgt 46761 issmfge 46775 grtriproplem 47942 grtrif1o 47945 funcf2lem 49074 |
| Copyright terms: Public domain | W3C validator |