MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi3i Structured version   Visualization version   GIF version

Theorem 3anbi3i 1158
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi3i ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))

Proof of Theorem 3anbi3i
StepHypRef Expression
1 biid 260 . 2 (𝜒𝜒)
2 biid 260 . 2 (𝜃𝜃)
3 3anbi1i.1 . 2 (𝜑𝜓)
41, 2, 33anbi123i 1154 1 ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  cadcomb  1615  dfwrecsOLD  8129  dfer2  8499  ttrclresv  9475  axgroth2  10581  oppgsubm  18969  xrsdsreclb  20645  ordthaus  22535  qtopeu  22867  regr1lem2  22891  isfbas2  22986  isclmp  24260  umgr2edg1  27578  xrge0adddir  31301  isros  32136  bnj964  32923  bnj1033  32949  cusgr3cyclex  33098  dfon2lem7  33765  outsideofcom  34430  linecom  34452  linerflx2  34453  topdifinffinlem  35518  rdgeqoa  35541  ishlat2  37367  lhpex2leN  38027  lmbr3v  43286  lmbr3  43288  fourierdlem103  43750  fourierdlem104  43751  issmf  44264  issmff  44270  issmfle  44281  issmfgt  44292  issmfge  44305  funcf2lem  46299
  Copyright terms: Public domain W3C validator