Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
2 | biid 260 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 1, 2, 3 | 3anbi123i 1154 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: cadcomb 1615 dfwrecsOLD 8116 dfer2 8486 ttrclresv 9462 axgroth2 10591 oppgsubm 18979 xrsdsreclb 20655 ordthaus 22545 qtopeu 22877 regr1lem2 22901 isfbas2 22996 isclmp 24270 umgr2edg1 27588 xrge0adddir 31309 isros 32144 bnj964 32931 bnj1033 32957 cusgr3cyclex 33106 dfon2lem7 33773 outsideofcom 34438 linecom 34460 linerflx2 34461 topdifinffinlem 35526 rdgeqoa 35549 ishlat2 37375 lhpex2leN 38035 lmbr3v 43267 lmbr3 43269 fourierdlem103 43731 fourierdlem104 43732 issmf 44242 issmff 44248 issmfle 44259 issmfgt 44270 issmfge 44283 funcf2lem 46277 |
Copyright terms: Public domain | W3C validator |