![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 1, 2, 3 | 3anbi123i 1154 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: cadcomb 1610 dfwrecsOLD 8337 dfer2 8745 ttrclresv 9755 axgroth2 10863 oppgsubm 19396 xrsdsreclb 21449 ordthaus 23408 qtopeu 23740 regr1lem2 23764 isfbas2 23859 isclmp 25144 umgr2edg1 29243 xrge0adddir 33006 isros 34149 bnj964 34936 bnj1033 34962 cusgr3cyclex 35121 dfon2lem7 35771 outsideofcom 36110 linecom 36132 linerflx2 36133 topdifinffinlem 37330 rdgeqoa 37353 ishlat2 39335 lhpex2leN 39996 aks6d1c1rh 42107 sn-isghm 42660 lmbr3v 45701 lmbr3 45703 fourierdlem103 46165 fourierdlem104 46166 issmf 46684 issmff 46690 issmfle 46701 issmfgt 46712 issmfge 46726 grtriproplem 47844 grtrif1o 47847 funcf2lem 48811 |
Copyright terms: Public domain | W3C validator |