| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1614 dfer2 8623 ttrclresv 9607 axgroth2 10716 oppgsubm 19274 xrsdsreclb 21350 ordthaus 23299 qtopeu 23631 regr1lem2 23655 isfbas2 23750 isclmp 25024 umgr2edg1 29189 xrge0adddir 32999 isros 34181 bnj964 34955 bnj1033 34981 cusgr3cyclex 35180 dfon2lem7 35831 outsideofcom 36172 linecom 36194 linerflx2 36195 topdifinffinlem 37391 rdgeqoa 37414 ishlat2 39451 lhpex2leN 40111 aks6d1c1rh 42217 sn-isghm 42765 lmbr3v 45842 lmbr3 45844 fourierdlem103 46306 fourierdlem104 46307 issmf 46825 issmff 46831 issmfle 46842 issmfgt 46853 issmfge 46867 grtriproplem 48038 grtrif1o 48041 funcf2lem 49181 |
| Copyright terms: Public domain | W3C validator |