Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
2 | biid 260 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 1, 2, 3 | 3anbi123i 1153 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: cadcomb 1616 dfwrecsOLD 8100 dfer2 8457 axgroth2 10512 oppgsubm 18884 xrsdsreclb 20557 ordthaus 22443 qtopeu 22775 regr1lem2 22799 isfbas2 22894 isclmp 24166 umgr2edg1 27481 xrge0adddir 31203 isros 32036 bnj964 32823 bnj1033 32849 cusgr3cyclex 32998 dfon2lem7 33671 ttrclresv 33703 outsideofcom 34357 linecom 34379 linerflx2 34380 topdifinffinlem 35445 rdgeqoa 35468 ishlat2 37294 lhpex2leN 37954 lmbr3v 43176 lmbr3 43178 fourierdlem103 43640 fourierdlem104 43641 issmf 44151 issmff 44157 issmfle 44168 issmfgt 44179 issmfge 44192 funcf2lem 46187 |
Copyright terms: Public domain | W3C validator |