Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
2 | biid 260 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 1, 2, 3 | 3anbi123i 1154 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: cadcomb 1615 dfwrecsOLD 8129 dfer2 8499 ttrclresv 9475 axgroth2 10581 oppgsubm 18969 xrsdsreclb 20645 ordthaus 22535 qtopeu 22867 regr1lem2 22891 isfbas2 22986 isclmp 24260 umgr2edg1 27578 xrge0adddir 31301 isros 32136 bnj964 32923 bnj1033 32949 cusgr3cyclex 33098 dfon2lem7 33765 outsideofcom 34430 linecom 34452 linerflx2 34453 topdifinffinlem 35518 rdgeqoa 35541 ishlat2 37367 lhpex2leN 38027 lmbr3v 43286 lmbr3 43288 fourierdlem103 43750 fourierdlem104 43751 issmf 44264 issmff 44270 issmfle 44281 issmfgt 44292 issmfge 44305 funcf2lem 46299 |
Copyright terms: Public domain | W3C validator |