| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1613 dfwrecsOLD 8317 dfer2 8725 ttrclresv 9736 axgroth2 10844 oppgsubm 19350 xrsdsreclb 21386 ordthaus 23327 qtopeu 23659 regr1lem2 23683 isfbas2 23778 isclmp 25053 umgr2edg1 29195 xrge0adddir 33018 isros 34204 bnj964 34979 bnj1033 35005 cusgr3cyclex 35163 dfon2lem7 35812 outsideofcom 36151 linecom 36173 linerflx2 36174 topdifinffinlem 37370 rdgeqoa 37393 ishlat2 39376 lhpex2leN 40037 aks6d1c1rh 42143 sn-isghm 42663 lmbr3v 45741 lmbr3 45743 fourierdlem103 46205 fourierdlem104 46206 issmf 46724 issmff 46730 issmfle 46741 issmfgt 46752 issmfge 46766 grtriproplem 47918 grtrif1o 47921 funcf2lem 49013 |
| Copyright terms: Public domain | W3C validator |