| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1613 dfer2 8672 ttrclresv 9670 axgroth2 10778 oppgsubm 19294 xrsdsreclb 21330 ordthaus 23271 qtopeu 23603 regr1lem2 23627 isfbas2 23722 isclmp 24997 umgr2edg1 29138 xrge0adddir 32959 isros 34158 bnj964 34933 bnj1033 34959 cusgr3cyclex 35123 dfon2lem7 35777 outsideofcom 36116 linecom 36138 linerflx2 36139 topdifinffinlem 37335 rdgeqoa 37358 ishlat2 39346 lhpex2leN 40007 aks6d1c1rh 42113 sn-isghm 42661 lmbr3v 45743 lmbr3 45745 fourierdlem103 46207 fourierdlem104 46208 issmf 46726 issmff 46732 issmfle 46743 issmfgt 46754 issmfge 46768 grtriproplem 47938 grtrif1o 47941 funcf2lem 49070 |
| Copyright terms: Public domain | W3C validator |