| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cadcomb 1613 dfer2 8626 ttrclresv 9613 axgroth2 10719 oppgsubm 19241 xrsdsreclb 21320 ordthaus 23269 qtopeu 23601 regr1lem2 23625 isfbas2 23720 isclmp 24995 umgr2edg1 29160 xrge0adddir 32981 isros 34151 bnj964 34926 bnj1033 34952 cusgr3cyclex 35129 dfon2lem7 35783 outsideofcom 36122 linecom 36144 linerflx2 36145 topdifinffinlem 37341 rdgeqoa 37364 ishlat2 39352 lhpex2leN 40012 aks6d1c1rh 42118 sn-isghm 42666 lmbr3v 45746 lmbr3 45748 fourierdlem103 46210 fourierdlem104 46211 issmf 46729 issmff 46735 issmfle 46746 issmfgt 46757 issmfge 46771 grtriproplem 47943 grtrif1o 47946 funcf2lem 49086 |
| Copyright terms: Public domain | W3C validator |