![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi3i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
2 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: cadcomb 1610 dfwrecsOLD 8354 dfer2 8764 ttrclresv 9786 axgroth2 10894 oppgsubm 19405 xrsdsreclb 21454 ordthaus 23413 qtopeu 23745 regr1lem2 23769 isfbas2 23864 isclmp 25149 umgr2edg1 29246 xrge0adddir 33004 isros 34132 bnj964 34919 bnj1033 34945 cusgr3cyclex 35104 dfon2lem7 35753 outsideofcom 36092 linecom 36114 linerflx2 36115 topdifinffinlem 37313 rdgeqoa 37336 ishlat2 39309 lhpex2leN 39970 aks6d1c1rh 42082 sn-isghm 42628 lmbr3v 45666 lmbr3 45668 fourierdlem103 46130 fourierdlem104 46131 issmf 46649 issmff 46655 issmfle 46666 issmfgt 46677 issmfge 46691 grtriproplem 47790 grtrif1o 47793 funcf2lem 48685 |
Copyright terms: Public domain | W3C validator |