MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi3i Structured version   Visualization version   GIF version

Theorem 3anbi3i 1158
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi3i ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))

Proof of Theorem 3anbi3i
StepHypRef Expression
1 biid 261 . 2 (𝜒𝜒)
2 biid 261 . 2 (𝜃𝜃)
3 3anbi1i.1 . 2 (𝜑𝜓)
41, 2, 33anbi123i 1154 1 ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cadcomb  1610  dfwrecsOLD  8337  dfer2  8745  ttrclresv  9755  axgroth2  10863  oppgsubm  19396  xrsdsreclb  21449  ordthaus  23408  qtopeu  23740  regr1lem2  23764  isfbas2  23859  isclmp  25144  umgr2edg1  29243  xrge0adddir  33006  isros  34149  bnj964  34936  bnj1033  34962  cusgr3cyclex  35121  dfon2lem7  35771  outsideofcom  36110  linecom  36132  linerflx2  36133  topdifinffinlem  37330  rdgeqoa  37353  ishlat2  39335  lhpex2leN  39996  aks6d1c1rh  42107  sn-isghm  42660  lmbr3v  45701  lmbr3  45703  fourierdlem103  46165  fourierdlem104  46166  issmf  46684  issmff  46690  issmfle  46701  issmfgt  46712  issmfge  46726  grtriproplem  47844  grtrif1o  47847  funcf2lem  48811
  Copyright terms: Public domain W3C validator