Step | Hyp | Ref
| Expression |
1 | | dfclel 2817 |
. . . 4
⊢
((♯‘𝑉)
∈ ℕ0 ↔ ∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈
ℕ0)) |
2 | | fi1uzind.l |
. . . . . . . . . . . . . 14
⊢ 𝐿 ∈
ℕ0 |
3 | | nn0z 12200 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
4 | 2, 3 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → 𝐿 ∈ ℤ) |
5 | | nn0z 12200 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
6 | 5 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → 𝑛 ∈ ℤ) |
7 | | breq2 5057 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑉) =
𝑛 → (𝐿 ≤ (♯‘𝑉) ↔ 𝐿 ≤ 𝑛)) |
8 | 7 | eqcoms 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (♯‘𝑉) → (𝐿 ≤ (♯‘𝑉) ↔ 𝐿 ≤ 𝑛)) |
9 | 8 | biimpcd 252 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ≤ (♯‘𝑉) → (𝑛 = (♯‘𝑉) → 𝐿 ≤ 𝑛)) |
10 | 9 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑛 = (♯‘𝑉) → 𝐿 ≤ 𝑛)) |
11 | 10 | imp 410 |
. . . . . . . . . . . . 13
⊢ (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → 𝐿 ≤ 𝑛) |
12 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐿 → (𝑥 = (♯‘𝑣) ↔ 𝐿 = (♯‘𝑣))) |
13 | 12 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐿 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (♯‘𝑣)))) |
14 | 13 | imbi1d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐿 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (♯‘𝑣)) → 𝜓))) |
15 | 14 | 2albidv 1931 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐿 → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (♯‘𝑣)) → 𝜓))) |
16 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑥 = (♯‘𝑣) ↔ 𝑦 = (♯‘𝑣))) |
17 | 16 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)))) |
18 | 17 | imbi1d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)) → 𝜓))) |
19 | 18 | 2albidv 1931 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)) → 𝜓))) |
20 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 + 1) → (𝑥 = (♯‘𝑣) ↔ (𝑦 + 1) = (♯‘𝑣))) |
21 | 20 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 + 1) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)))) |
22 | 21 | imbi1d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 + 1) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓))) |
23 | 22 | 2albidv 1931 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + 1) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓))) |
24 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑛 → (𝑥 = (♯‘𝑣) ↔ 𝑛 = (♯‘𝑣))) |
25 | 24 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑛 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)))) |
26 | 25 | imbi1d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓))) |
27 | 26 | 2albidv 1931 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓))) |
28 | | eqcom 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 = (♯‘𝑣) ↔ (♯‘𝑣) = 𝐿) |
29 | | fi1uzind.base |
. . . . . . . . . . . . . . . . 17
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
30 | 28, 29 | sylan2b 597 |
. . . . . . . . . . . . . . . 16
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (♯‘𝑣)) → 𝜓) |
31 | 30 | gen2 1804 |
. . . . . . . . . . . . . . 15
⊢
∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (♯‘𝑣)) → 𝜓) |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℤ →
∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (♯‘𝑣)) → 𝜓)) |
33 | | simpl 486 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → 𝑣 = 𝑤) |
34 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓) |
35 | 34 | sbceq1d 3699 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ([𝑒 / 𝑏]𝜌 ↔ [𝑓 / 𝑏]𝜌)) |
36 | 33, 35 | sbceqbid 3701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ↔ [𝑤 / 𝑎][𝑓 / 𝑏]𝜌)) |
37 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑤 → (♯‘𝑣) = (♯‘𝑤)) |
38 | 37 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑤 → (𝑦 = (♯‘𝑣) ↔ 𝑦 = (♯‘𝑤))) |
39 | 38 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝑦 = (♯‘𝑣) ↔ 𝑦 = (♯‘𝑤))) |
40 | 36, 39 | anbi12d 634 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)) ↔ ([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)))) |
41 | | fi1uzind.2 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
42 | 40, 41 | imbi12d 348 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)) → 𝜓) ↔ (([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃))) |
43 | 42 | cbval2vw 2048 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃)) |
44 | | nn0ge0 12115 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐿 ∈ ℕ0
→ 0 ≤ 𝐿) |
45 | | 0red 10836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℤ → 0 ∈
ℝ) |
46 | | nn0re 12099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
47 | 2, 46 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℤ → 𝐿 ∈
ℝ) |
48 | | zre 12180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
49 | | letr 10926 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((0
∈ ℝ ∧ 𝐿
∈ ℝ ∧ 𝑦
∈ ℝ) → ((0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦) → 0 ≤ 𝑦)) |
50 | 45, 47, 48, 49 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ → ((0 ≤
𝐿 ∧ 𝐿 ≤ 𝑦) → 0 ≤ 𝑦)) |
51 | | 0nn0 12105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 0 ∈
ℕ0 |
52 | | pm3.22 463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) |
53 | | 0z 12187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 0 ∈
ℤ |
54 | | eluz1 12442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (0 ∈
ℤ → (𝑦 ∈
(ℤ≥‘0) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))) |
55 | 53, 54 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ≥‘0)
↔ (𝑦 ∈ ℤ
∧ 0 ≤ 𝑦))) |
56 | 52, 55 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → 𝑦 ∈
(ℤ≥‘0)) |
57 | | eluznn0 12513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0
∈ ℕ0 ∧ 𝑦 ∈ (ℤ≥‘0))
→ 𝑦 ∈
ℕ0) |
58 | 51, 56, 57 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℕ0) |
59 | 58 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (0 ≤
𝑦 → (𝑦 ∈ ℤ → 𝑦 ∈
ℕ0)) |
60 | 50, 59 | syl6com 37 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((0 ≤
𝐿 ∧ 𝐿 ≤ 𝑦) → (𝑦 ∈ ℤ → (𝑦 ∈ ℤ → 𝑦 ∈
ℕ0))) |
61 | 60 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ≤
𝐿 → (𝐿 ≤ 𝑦 → (𝑦 ∈ ℤ → (𝑦 ∈ ℤ → 𝑦 ∈
ℕ0)))) |
62 | 61 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℤ → (𝐿 ≤ 𝑦 → (𝑦 ∈ ℤ → (0 ≤ 𝐿 → 𝑦 ∈
ℕ0)))) |
63 | 62 | pm2.43a 54 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ → (𝐿 ≤ 𝑦 → (0 ≤ 𝐿 → 𝑦 ∈
ℕ0))) |
64 | 63 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → (0 ≤ 𝐿 → 𝑦 ∈
ℕ0)) |
65 | 64 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ≤
𝐿 → ((𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → 𝑦 ∈
ℕ0)) |
66 | 2, 44, 65 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → 𝑦 ∈ ℕ0) |
67 | 66 | 3adant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → 𝑦 ∈ ℕ0) |
68 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) = (♯‘𝑣) ↔ (♯‘𝑣) = (𝑦 + 1)) |
69 | | nn0p1gt0 12119 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℕ0
→ 0 < (𝑦 +
1)) |
70 | 69 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ0
∧ (♯‘𝑣) =
(𝑦 + 1)) → 0 <
(𝑦 + 1)) |
71 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ0
∧ (♯‘𝑣) =
(𝑦 + 1)) →
(♯‘𝑣) = (𝑦 + 1)) |
72 | 70, 71 | breqtrrd 5081 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℕ0
∧ (♯‘𝑣) =
(𝑦 + 1)) → 0 <
(♯‘𝑣)) |
73 | 68, 72 | sylan2b 597 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ0
∧ (𝑦 + 1) =
(♯‘𝑣)) → 0
< (♯‘𝑣)) |
74 | 73 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → 0 < (♯‘𝑣)) |
75 | | hashgt0elex 13968 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣 ∈ V ∧ 0 <
(♯‘𝑣)) →
∃𝑛 𝑛 ∈ 𝑣) |
76 | | fi1uzind.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) |
77 | | vex 3412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ 𝑣 ∈ V |
78 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑣 ∈ V) |
79 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑛 ∈ 𝑣) |
80 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑦 ∈ ℕ0) |
81 | | hashdifsnp1 14062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0) →
((♯‘𝑣) = (𝑦 + 1) →
(♯‘(𝑣 ∖
{𝑛})) = 𝑦)) |
82 | 68, 81 | syl5bi 245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) = (♯‘𝑣) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
83 | 78, 79, 80, 82 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) = (♯‘𝑣) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
84 | 83 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦) |
85 | | peano2nn0 12130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ0) |
86 | 85 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → (𝑦 + 1) ∈
ℕ0) |
87 | 86 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → (𝑦 + 1) ∈
ℕ0) |
88 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) |
89 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → (𝑦 + 1) = (♯‘𝑣)) |
90 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) → 𝑛 ∈ 𝑣) |
91 | 90 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → 𝑛 ∈ 𝑣) |
92 | 88, 89, 91 | 3jca 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛 ∈ 𝑣)) |
93 | 87, 92 | jca 515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((𝑦 + 1) ∈ ℕ0 ∧
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛 ∈ 𝑣))) |
94 | 77 | difexi 5221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑣 ∖ {𝑛}) ∈ V |
95 | | fi1uzind.f |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ 𝐹 ∈ V |
96 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → 𝑤 = (𝑣 ∖ {𝑛})) |
97 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
98 | 97 | sbceq1d 3699 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ([𝑓 / 𝑏]𝜌 ↔ [𝐹 / 𝑏]𝜌)) |
99 | 96, 98 | sbceqbid 3701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ↔ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌)) |
100 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (𝑦 = (♯‘𝑤) ↔ (♯‘𝑤) = 𝑦) |
101 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → ((♯‘𝑤) = 𝑦 ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
102 | 100, 101 | syl5bb 286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → (𝑦 = (♯‘𝑤) ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
103 | 102 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑦 = (♯‘𝑤) ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
104 | 99, 103 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) ↔ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))) |
105 | | fi1uzind.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
106 | 104, 105 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ↔ (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
107 | 106 | spc2gv 3515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ V) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
108 | 94, 95, 107 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)) |
109 | 108 | expdimp 456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
110 | 109 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
111 | 68 | 3anbi2i 1160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛 ∈ 𝑣) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
112 | 111 | anbi2i 626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝑦 + 1) ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
113 | | fi1uzind.step |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
114 | 112, 113 | sylanb 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
115 | 93, 110, 114 | syl6an 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓)) |
116 | 115 | exp41 438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓))))) |
117 | 116 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((♯‘(𝑣
∖ {𝑛})) = 𝑦 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
118 | 117 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((♯‘(𝑣
∖ {𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
119 | 84, 118 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))) |
120 | 119 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) = (♯‘𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
121 | 120 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
122 | 121 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ ℕ0
→ (𝑛 ∈ 𝑣 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))) |
123 | 122 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (𝑛 ∈ 𝑣 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))) |
124 | 123 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 ∈ 𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
125 | 76, 124 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))) |
126 | 125 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (𝑛 ∈ 𝑣 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
127 | 126 | com4l 92 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ 𝑣 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 →
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
128 | 127 | exlimiv 1938 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃𝑛 𝑛 ∈ 𝑣 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 →
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
129 | 75, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑣 ∈ V ∧ 0 <
(♯‘𝑣)) →
((𝑦 + 1) =
(♯‘𝑣) →
(𝑦 ∈
ℕ0 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
130 | 129 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ V → (0 <
(♯‘𝑣) →
((𝑦 + 1) =
(♯‘𝑣) →
(𝑦 ∈
ℕ0 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))) |
131 | 130 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ V → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (0 <
(♯‘𝑣) →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))) |
132 | 131 | elv 3414 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (0 <
(♯‘𝑣) →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))) |
133 | 132 | imp 410 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → (𝑦 ∈ ℕ0 → (0 <
(♯‘𝑣) →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))) |
134 | 133 | impcom 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → (0 < (♯‘𝑣) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))) |
135 | 74, 134 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)) |
136 | 67, 135 | sylan 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)) |
137 | 136 | impancom 455 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) ∧ ∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃)) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓)) |
138 | 137 | alrimivv 1936 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) ∧ ∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃)) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓)) |
139 | 138 | ex 416 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑤)) → 𝜃) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓))) |
140 | 43, 139 | syl5bi 245 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (♯‘𝑣)) → 𝜓) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓))) |
141 | 15, 19, 23, 27, 32, 140 | uzind 12269 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐿 ≤ 𝑛) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓)) |
142 | 4, 6, 11, 141 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓)) |
143 | | sbcex 3704 |
. . . . . . . . . . . . . . 15
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → 𝑉 ∈ V) |
144 | | sbccom 3783 |
. . . . . . . . . . . . . . . 16
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ↔ [𝐸 / 𝑏][𝑉 / 𝑎]𝜌) |
145 | | sbcex 3704 |
. . . . . . . . . . . . . . . 16
⊢
([𝐸 / 𝑏][𝑉 / 𝑎]𝜌 → 𝐸 ∈ V) |
146 | 144, 145 | sylbi 220 |
. . . . . . . . . . . . . . 15
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → 𝐸 ∈ V) |
147 | 143, 146 | jca 515 |
. . . . . . . . . . . . . 14
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
148 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑣 = 𝑉) |
149 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) |
150 | 149 | sbceq1d 3699 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ([𝑒 / 𝑏]𝜌 ↔ [𝐸 / 𝑏]𝜌)) |
151 | 148, 150 | sbceqbid 3701 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ↔ [𝑉 / 𝑎][𝐸 / 𝑏]𝜌)) |
152 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑉 → (♯‘𝑣) = (♯‘𝑉)) |
153 | 152 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑉 → (𝑛 = (♯‘𝑣) ↔ 𝑛 = (♯‘𝑉))) |
154 | 153 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑛 = (♯‘𝑣) ↔ 𝑛 = (♯‘𝑉))) |
155 | 151, 154 | anbi12d 634 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) ↔ ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)))) |
156 | | fi1uzind.1 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
157 | 155, 156 | imbi12d 348 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓) ↔ (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → 𝜑))) |
158 | 157 | spc2gv 3515 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → 𝜑))) |
159 | 158 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) →
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑))) |
160 | 159 | expd 419 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 = (♯‘𝑉) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑)))) |
161 | 147, 160 | mpcom 38 |
. . . . . . . . . . . . 13
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 = (♯‘𝑉) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑))) |
162 | 161 | imp 410 |
. . . . . . . . . . . 12
⊢
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑)) |
163 | 142, 162 | syl5com 31 |
. . . . . . . . . . 11
⊢ (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → 𝜑)) |
164 | 163 | exp31 423 |
. . . . . . . . . 10
⊢ (𝐿 ≤ (♯‘𝑉) → (𝑛 ∈ ℕ0 → (𝑛 = (♯‘𝑉) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → 𝜑)))) |
165 | 164 | com14 96 |
. . . . . . . . 9
⊢
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (♯‘𝑉)) → (𝑛 ∈ ℕ0 → (𝑛 = (♯‘𝑉) → (𝐿 ≤ (♯‘𝑉) → 𝜑)))) |
166 | 165 | expcom 417 |
. . . . . . . 8
⊢ (𝑛 = (♯‘𝑉) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 ∈ ℕ0 → (𝑛 = (♯‘𝑉) → (𝐿 ≤ (♯‘𝑉) → 𝜑))))) |
167 | 166 | com24 95 |
. . . . . . 7
⊢ (𝑛 = (♯‘𝑉) → (𝑛 = (♯‘𝑉) → (𝑛 ∈ ℕ0 →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑))))) |
168 | 167 | pm2.43i 52 |
. . . . . 6
⊢ (𝑛 = (♯‘𝑉) → (𝑛 ∈ ℕ0 →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑)))) |
169 | 168 | imp 410 |
. . . . 5
⊢ ((𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑))) |
170 | 169 | exlimiv 1938 |
. . . 4
⊢
(∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑))) |
171 | 1, 170 | sylbi 220 |
. . 3
⊢
((♯‘𝑉)
∈ ℕ0 → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑))) |
172 | | hashcl 13923 |
. . 3
⊢ (𝑉 ∈ Fin →
(♯‘𝑉) ∈
ℕ0) |
173 | 171, 172 | syl11 33 |
. 2
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑉 ∈ Fin → (𝐿 ≤ (♯‘𝑉) → 𝜑))) |
174 | 173 | 3imp 1113 |
1
⊢
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |