MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fi1uzind Structured version   Visualization version   GIF version

Theorem fi1uzind 14556
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14561) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
fi1uzind.f 𝐹 ∈ V
fi1uzind.l 𝐿 ∈ ℕ0
fi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
fi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
fi1uzind.3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌)
fi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
fi1uzind.base (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
fi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
fi1uzind (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑎,𝑏,𝑒,𝑛,𝑣,𝑦,𝑓,𝑤   𝐸,𝑎,𝑒,𝑛,𝑣   𝐹,𝑎,𝑓,𝑤   𝑒,𝐿,𝑛,𝑣,𝑦   𝑉,𝑎,𝑏,𝑒,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣   𝜌,𝑒,𝑓,𝑛,𝑣,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓,𝑎,𝑏)   𝜓(𝑣,𝑒,𝑎,𝑏)   𝜒(𝑦,𝑣,𝑒,𝑛,𝑎,𝑏)   𝜃(𝑦,𝑤,𝑓,𝑎,𝑏)   𝜌(𝑎,𝑏)   𝐸(𝑦,𝑤,𝑓,𝑏)   𝐹(𝑦,𝑣,𝑒,𝑛,𝑏)   𝐿(𝑤,𝑓,𝑎,𝑏)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem fi1uzind
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2820 . . . 4 ((♯‘𝑉) ∈ ℕ0 ↔ ∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0))
2 fi1uzind.l . . . . . . . . . . . . . 14 𝐿 ∈ ℕ0
3 nn0z 12664 . . . . . . . . . . . . . 14 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
42, 3mp1i 13 . . . . . . . . . . . . 13 (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → 𝐿 ∈ ℤ)
5 nn0z 12664 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
65ad2antlr 726 . . . . . . . . . . . . 13 (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → 𝑛 ∈ ℤ)
7 breq2 5170 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) = 𝑛 → (𝐿 ≤ (♯‘𝑉) ↔ 𝐿𝑛))
87eqcoms 2748 . . . . . . . . . . . . . . . 16 (𝑛 = (♯‘𝑉) → (𝐿 ≤ (♯‘𝑉) ↔ 𝐿𝑛))
98biimpcd 249 . . . . . . . . . . . . . . 15 (𝐿 ≤ (♯‘𝑉) → (𝑛 = (♯‘𝑉) → 𝐿𝑛))
109adantr 480 . . . . . . . . . . . . . 14 ((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑛 = (♯‘𝑉) → 𝐿𝑛))
1110imp 406 . . . . . . . . . . . . 13 (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → 𝐿𝑛)
12 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐿 → (𝑥 = (♯‘𝑣) ↔ 𝐿 = (♯‘𝑣)))
1312anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝐿 = (♯‘𝑣))))
1413imbi1d 341 . . . . . . . . . . . . . . 15 (𝑥 = 𝐿 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝐿 = (♯‘𝑣)) → 𝜓)))
15142albidv 1922 . . . . . . . . . . . . . 14 (𝑥 = 𝐿 → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝐿 = (♯‘𝑣)) → 𝜓)))
16 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥 = (♯‘𝑣) ↔ 𝑦 = (♯‘𝑣)))
1716anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣))))
1817imbi1d 341 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣)) → 𝜓)))
19182albidv 1922 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣)) → 𝜓)))
20 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 + 1) → (𝑥 = (♯‘𝑣) ↔ (𝑦 + 1) = (♯‘𝑣)))
2120anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + 1) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))))
2221imbi1d 341 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + 1) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓)))
23222albidv 1922 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓)))
24 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑛 → (𝑥 = (♯‘𝑣) ↔ 𝑛 = (♯‘𝑣)))
2524anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣))))
2625imbi1d 341 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓)))
27262albidv 1922 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑥 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓)))
28 eqcom 2747 . . . . . . . . . . . . . . . . 17 (𝐿 = (♯‘𝑣) ↔ (♯‘𝑣) = 𝐿)
29 fi1uzind.base . . . . . . . . . . . . . . . . 17 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
3028, 29sylan2b 593 . . . . . . . . . . . . . . . 16 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝐿 = (♯‘𝑣)) → 𝜓)
3130gen2 1794 . . . . . . . . . . . . . . 15 𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝐿 = (♯‘𝑣)) → 𝜓)
3231a1i 11 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝐿 = (♯‘𝑣)) → 𝜓))
33 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = 𝑤𝑒 = 𝑓) → 𝑣 = 𝑤)
34 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 = 𝑤𝑒 = 𝑓) → 𝑒 = 𝑓)
3534sbceq1d 3809 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = 𝑤𝑒 = 𝑓) → ([𝑒 / 𝑏]𝜌[𝑓 / 𝑏]𝜌))
3633, 35sbceqbid 3811 . . . . . . . . . . . . . . . . . 18 ((𝑣 = 𝑤𝑒 = 𝑓) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌[𝑤 / 𝑎][𝑓 / 𝑏]𝜌))
37 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (♯‘𝑣) = (♯‘𝑤))
3837eqeq2d 2751 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑦 = (♯‘𝑣) ↔ 𝑦 = (♯‘𝑤)))
3938adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑦 = (♯‘𝑣) ↔ 𝑦 = (♯‘𝑤)))
4036, 39anbi12d 631 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑤𝑒 = 𝑓) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣)) ↔ ([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤))))
41 fi1uzind.2 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
4240, 41imbi12d 344 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑤𝑒 = 𝑓) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣)) → 𝜓) ↔ (([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃)))
4342cbval2vw 2039 . . . . . . . . . . . . . . 15 (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣)) → 𝜓) ↔ ∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃))
44 nn0ge0 12578 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → 0 ≤ 𝐿)
45 0red 11293 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℤ → 0 ∈ ℝ)
46 nn0re 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
472, 46mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℤ → 𝐿 ∈ ℝ)
48 zre 12643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
49 letr 11384 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝐿𝐿𝑦) → 0 ≤ 𝑦))
5045, 47, 48, 49syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℤ → ((0 ≤ 𝐿𝐿𝑦) → 0 ≤ 𝑦))
51 0nn0 12568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℕ0
52 pm3.22 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ≤ 𝑦𝑦 ∈ ℤ) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
53 0z 12650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 0 ∈ ℤ
54 eluz1 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ ℤ → (𝑦 ∈ (ℤ‘0) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)))
5553, 54mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ≤ 𝑦𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ‘0) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)))
5652, 55mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 ≤ 𝑦𝑦 ∈ ℤ) → 𝑦 ∈ (ℤ‘0))
57 eluznn0 12982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 ∈ ℕ0𝑦 ∈ (ℤ‘0)) → 𝑦 ∈ ℕ0)
5851, 56, 57sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ≤ 𝑦𝑦 ∈ ℤ) → 𝑦 ∈ ℕ0)
5958ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ≤ 𝑦 → (𝑦 ∈ ℤ → 𝑦 ∈ ℕ0))
6050, 59syl6com 37 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ≤ 𝐿𝐿𝑦) → (𝑦 ∈ ℤ → (𝑦 ∈ ℤ → 𝑦 ∈ ℕ0)))
6160ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 𝐿 → (𝐿𝑦 → (𝑦 ∈ ℤ → (𝑦 ∈ ℤ → 𝑦 ∈ ℕ0))))
6261com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℤ → (𝐿𝑦 → (𝑦 ∈ ℤ → (0 ≤ 𝐿𝑦 ∈ ℕ0))))
6362pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℤ → (𝐿𝑦 → (0 ≤ 𝐿𝑦 ∈ ℕ0)))
6463imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℤ ∧ 𝐿𝑦) → (0 ≤ 𝐿𝑦 ∈ ℕ0))
6564com12 32 . . . . . . . . . . . . . . . . . . . . 21 (0 ≤ 𝐿 → ((𝑦 ∈ ℤ ∧ 𝐿𝑦) → 𝑦 ∈ ℕ0))
662, 44, 65mp2b 10 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℤ ∧ 𝐿𝑦) → 𝑦 ∈ ℕ0)
67663adant1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿𝑦) → 𝑦 ∈ ℕ0)
68 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 + 1) = (♯‘𝑣) ↔ (♯‘𝑣) = (𝑦 + 1))
69 nn0p1gt0 12582 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ0 → 0 < (𝑦 + 1))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ0 ∧ (♯‘𝑣) = (𝑦 + 1)) → 0 < (𝑦 + 1))
71 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ0 ∧ (♯‘𝑣) = (𝑦 + 1)) → (♯‘𝑣) = (𝑦 + 1))
7270, 71breqtrrd 5194 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℕ0 ∧ (♯‘𝑣) = (𝑦 + 1)) → 0 < (♯‘𝑣))
7368, 72sylan2b 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℕ0 ∧ (𝑦 + 1) = (♯‘𝑣)) → 0 < (♯‘𝑣))
7473adantrl 715 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → 0 < (♯‘𝑣))
75 hashgt0elex 14450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ V ∧ 0 < (♯‘𝑣)) → ∃𝑛 𝑛𝑣)
76 fi1uzind.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌)
77 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝑣 ∈ V
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑣 ∈ V)
79 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑛𝑣)
80 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑦 ∈ ℕ0)
81 hashdifsnp1 14555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑣 ∈ V ∧ 𝑛𝑣𝑦 ∈ ℕ0) → ((♯‘𝑣) = (𝑦 + 1) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
8268, 81biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑣 ∈ V ∧ 𝑛𝑣𝑦 ∈ ℕ0) → ((𝑦 + 1) = (♯‘𝑣) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
8378, 79, 80, 82syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ ℕ0𝑛𝑣) → ((𝑦 + 1) = (♯‘𝑣) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
8483imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦)
85 peano2nn0 12593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → (𝑦 + 1) ∈ ℕ0)
8786ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → (𝑦 + 1) ∈ ℕ0)
88 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → [𝑣 / 𝑎][𝑒 / 𝑏]𝜌)
89 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → (𝑦 + 1) = (♯‘𝑣))
90 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) → 𝑛𝑣)
9190adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → 𝑛𝑣)
9288, 89, 913jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛𝑣))
9387, 92jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛𝑣)))
9477difexi 5348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑣 ∖ {𝑛}) ∈ V
95 fi1uzind.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝐹 ∈ V
96 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → 𝑤 = (𝑣 ∖ {𝑛}))
97 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
9897sbceq1d 3809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ([𝑓 / 𝑏]𝜌[𝐹 / 𝑏]𝜌))
9996, 98sbceqbid 3811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ([𝑤 / 𝑎][𝑓 / 𝑏]𝜌[(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌))
100 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑦 = (♯‘𝑤) ↔ (♯‘𝑤) = 𝑦)
101 fveqeq2 6929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑤 = (𝑣 ∖ {𝑛}) → ((♯‘𝑤) = 𝑦 ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
102100, 101bitrid 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑤 = (𝑣 ∖ {𝑛}) → (𝑦 = (♯‘𝑤) ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑦 = (♯‘𝑤) ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
10499, 103anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) ↔ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)))
105 fi1uzind.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
106104, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ↔ (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
107106spc2gv 3613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ V) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
10894, 95, 107mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))
109108expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
110109ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
111683anbi2i 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛𝑣) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
112111anbi2i 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
113 fi1uzind.step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
114112, 113sylanb 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
11593, 110, 114syl6an 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜓))
116115exp41 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜓)))))
117116com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
118117com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
11984, 118mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (𝑦 + 1) = (♯‘𝑣)) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))
120119ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → ((𝑦 + 1) = (♯‘𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
121120com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℕ0𝑛𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
122121ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℕ0 → (𝑛𝑣 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))))
123122com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (𝑛𝑣 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))))
124123imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
12576, 124mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛𝑣) → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))
126125ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (𝑛𝑣 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
127126com4l 92 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝑣 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
128127exlimiv 1929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑛 𝑛𝑣 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
12975, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ V ∧ 0 < (♯‘𝑣)) → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
130129ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 ∈ V → (0 < (♯‘𝑣) → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))))
131130com25 99 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ V → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (0 < (♯‘𝑣) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))))
132131elv 3493 . . . . . . . . . . . . . . . . . . . . . 22 ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((𝑦 + 1) = (♯‘𝑣) → (𝑦 ∈ ℕ0 → (0 < (♯‘𝑣) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))))
133132imp 406 . . . . . . . . . . . . . . . . . . . . 21 (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → (𝑦 ∈ ℕ0 → (0 < (♯‘𝑣) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))))
134133impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → (0 < (♯‘𝑣) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓)))
13574, 134mpd 15 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))
13667, 135sylan 579 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿𝑦) ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣))) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → 𝜓))
137136impancom 451 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿𝑦) ∧ ∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃)) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓))
138137alrimivv 1927 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿𝑦) ∧ ∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃)) → ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓))
139138ex 412 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿𝑦) → (∀𝑤𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌𝑦 = (♯‘𝑤)) → 𝜃) → ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓)))
14043, 139biimtrid 242 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿𝑦) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑦 = (♯‘𝑣)) → 𝜓) → ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (♯‘𝑣)) → 𝜓)))
14115, 19, 23, 27, 32, 140uzind 12735 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐿𝑛) → ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓))
1424, 6, 11, 141syl3anc 1371 . . . . . . . . . . . 12 (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → ∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓))
143 sbcex 3814 . . . . . . . . . . . . . . 15 ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑉 ∈ V)
144 sbccom 3893 . . . . . . . . . . . . . . . 16 ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌[𝐸 / 𝑏][𝑉 / 𝑎]𝜌)
145 sbcex 3814 . . . . . . . . . . . . . . . 16 ([𝐸 / 𝑏][𝑉 / 𝑎]𝜌𝐸 ∈ V)
146144, 145sylbi 217 . . . . . . . . . . . . . . 15 ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝐸 ∈ V)
147143, 146jca 511 . . . . . . . . . . . . . 14 ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
148 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
149 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑒 = 𝐸)
150149sbceq1d 3809 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 = 𝑉𝑒 = 𝐸) → ([𝑒 / 𝑏]𝜌[𝐸 / 𝑏]𝜌))
151148, 150sbceqbid 3811 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = 𝑉𝑒 = 𝐸) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌[𝑉 / 𝑎][𝐸 / 𝑏]𝜌))
152 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑉 → (♯‘𝑣) = (♯‘𝑉))
153152eqeq2d 2751 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑉 → (𝑛 = (♯‘𝑣) ↔ 𝑛 = (♯‘𝑉)))
154153adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑛 = (♯‘𝑣) ↔ 𝑛 = (♯‘𝑉)))
155151, 154anbi12d 631 . . . . . . . . . . . . . . . . . 18 ((𝑣 = 𝑉𝑒 = 𝐸) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) ↔ ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉))))
156 fi1uzind.1 . . . . . . . . . . . . . . . . . 18 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
157155, 156imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓) ↔ (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → 𝜑)))
158157spc2gv 3613 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → 𝜑)))
159158com23 86 . . . . . . . . . . . . . . 15 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑)))
160159expd 415 . . . . . . . . . . . . . 14 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 = (♯‘𝑉) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑))))
161147, 160mpcom 38 . . . . . . . . . . . . 13 ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 = (♯‘𝑉) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑)))
162161imp 406 . . . . . . . . . . . 12 (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → (∀𝑣𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌𝑛 = (♯‘𝑣)) → 𝜓) → 𝜑))
163142, 162syl5com 31 . . . . . . . . . . 11 (((𝐿 ≤ (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (♯‘𝑉)) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → 𝜑))
164163exp31 419 . . . . . . . . . 10 (𝐿 ≤ (♯‘𝑉) → (𝑛 ∈ ℕ0 → (𝑛 = (♯‘𝑉) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → 𝜑))))
165164com14 96 . . . . . . . . 9 (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑛 = (♯‘𝑉)) → (𝑛 ∈ ℕ0 → (𝑛 = (♯‘𝑉) → (𝐿 ≤ (♯‘𝑉) → 𝜑))))
166165expcom 413 . . . . . . . 8 (𝑛 = (♯‘𝑉) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 ∈ ℕ0 → (𝑛 = (♯‘𝑉) → (𝐿 ≤ (♯‘𝑉) → 𝜑)))))
167166com24 95 . . . . . . 7 (𝑛 = (♯‘𝑉) → (𝑛 = (♯‘𝑉) → (𝑛 ∈ ℕ0 → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑)))))
168167pm2.43i 52 . . . . . 6 (𝑛 = (♯‘𝑉) → (𝑛 ∈ ℕ0 → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑))))
169168imp 406 . . . . 5 ((𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑)))
170169exlimiv 1929 . . . 4 (∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑)))
1711, 170sylbi 217 . . 3 ((♯‘𝑉) ∈ ℕ0 → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (♯‘𝑉) → 𝜑)))
172 hashcl 14405 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
173171, 172syl11 33 . 2 ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑉 ∈ Fin → (𝐿 ≤ (♯‘𝑉) → 𝜑)))
1741733imp 1111 1 (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  [wsbc 3804  cdif 3973  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  0cn0 12553  cz 12639  cuz 12903  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  brfi1uzind  14557  opfi1uzind  14560
  Copyright terms: Public domain W3C validator