MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1158
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1156 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  iinfi  9412  fzolb  13638  brfi1uzind  14459  opfi1uzind  14462  01sqrexlem5  15193  bitsmod  16377  isfunc  17814  txcn  23130  trfil2  23391  isclmp  24613  eulerpartlemn  33411  bnj976  33819  bnj543  33935  bnj594  33954  bnj917  33976  topdifinffinlem  36276  dath  38655  oeord2com  42109  ichexmpl1  46185  elfzolborelfzop1  47248  nnolog2flm1  47324  isthincd2  47706
  Copyright terms: Public domain W3C validator