![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: iinfi 9486 fzolb 13722 brfi1uzind 14557 opfi1uzind 14560 01sqrexlem5 15295 bitsmod 16482 isfunc 17928 txcn 23655 trfil2 23916 isclmp 25149 eulerpartlemn 34346 bnj976 34753 bnj543 34869 bnj594 34888 bnj917 34910 topdifinffinlem 37313 dath 39693 oeord2com 43273 ichexmpl1 47343 grtriproplem 47790 grtrif1o 47793 elfzolborelfzop1 48248 nnolog2flm1 48324 isthincd2 48705 |
Copyright terms: Public domain | W3C validator |