MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1155
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 260 . 2 (𝜒𝜒)
3 biid 260 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1153 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  iinfi  9106  fzolb  13322  brfi1uzind  14140  opfi1uzind  14143  sqrlem5  14886  bitsmod  16071  isfunc  17495  txcn  22685  trfil2  22946  isclmp  24166  eulerpartlemn  32248  bnj976  32657  bnj543  32773  bnj594  32792  bnj917  32814  topdifinffinlem  35445  dath  37677  ichexmpl1  44809  elfzolborelfzop1  45748  nnolog2flm1  45824  isthincd2  46207
  Copyright terms: Public domain W3C validator