MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1155 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  iinfi  9486  fzolb  13722  brfi1uzind  14557  opfi1uzind  14560  01sqrexlem5  15295  bitsmod  16482  isfunc  17928  txcn  23655  trfil2  23916  isclmp  25149  eulerpartlemn  34346  bnj976  34753  bnj543  34869  bnj594  34888  bnj917  34910  topdifinffinlem  37313  dath  39693  oeord2com  43273  ichexmpl1  47343  grtriproplem  47790  grtrif1o  47793  elfzolborelfzop1  48248  nnolog2flm1  48324  isthincd2  48705
  Copyright terms: Public domain W3C validator