Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biid 260 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
3 | biid 260 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1153 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: iinfi 9106 fzolb 13322 brfi1uzind 14140 opfi1uzind 14143 sqrlem5 14886 bitsmod 16071 isfunc 17495 txcn 22685 trfil2 22946 isclmp 24166 eulerpartlemn 32248 bnj976 32657 bnj543 32773 bnj594 32792 bnj917 32814 topdifinffinlem 35445 dath 37677 ichexmpl1 44809 elfzolborelfzop1 45748 nnolog2flm1 45824 isthincd2 46207 |
Copyright terms: Public domain | W3C validator |