MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1155 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  iinfi  9301  fzolb  13565  brfi1uzind  14415  opfi1uzind  14418  01sqrexlem5  15153  bitsmod  16347  isfunc  17771  txcn  23541  trfil2  23802  isclmp  25024  eulerpartlemn  34394  bnj976  34789  bnj543  34905  bnj594  34924  bnj917  34946  topdifinffinlem  37391  dath  39845  oeord2com  43414  ichexmpl1  47579  grtriproplem  48049  grtrif1o  48052  elfzolborelfzop1  48630  nnolog2flm1  48701  isthincd2  49548
  Copyright terms: Public domain W3C validator