| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: iinfi 9344 fzolb 13602 brfi1uzind 14449 opfi1uzind 14452 01sqrexlem5 15188 bitsmod 16382 isfunc 17802 txcn 23489 trfil2 23750 isclmp 24973 eulerpartlemn 34345 bnj976 34740 bnj543 34856 bnj594 34875 bnj917 34897 topdifinffinlem 37308 dath 39703 oeord2com 43273 ichexmpl1 47443 grtriproplem 47911 grtrif1o 47914 elfzolborelfzop1 48481 nnolog2flm1 48552 isthincd2 49399 |
| Copyright terms: Public domain | W3C validator |