| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: iinfi 9368 fzolb 13626 brfi1uzind 14473 opfi1uzind 14476 01sqrexlem5 15212 bitsmod 16406 isfunc 17826 txcn 23513 trfil2 23774 isclmp 24997 eulerpartlemn 34372 bnj976 34767 bnj543 34883 bnj594 34902 bnj917 34924 topdifinffinlem 37335 dath 39730 oeord2com 43300 ichexmpl1 47470 grtriproplem 47938 grtrif1o 47941 elfzolborelfzop1 48508 nnolog2flm1 48579 isthincd2 49426 |
| Copyright terms: Public domain | W3C validator |