![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biid 260 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
3 | biid 260 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: iinfi 9408 fzolb 13634 brfi1uzind 14455 opfi1uzind 14458 01sqrexlem5 15189 bitsmod 16373 isfunc 17810 txcn 23121 trfil2 23382 isclmp 24604 eulerpartlemn 33368 bnj976 33776 bnj543 33892 bnj594 33911 bnj917 33933 topdifinffinlem 36216 dath 38595 oeord2com 42046 ichexmpl1 46123 elfzolborelfzop1 47153 nnolog2flm1 47229 isthincd2 47611 |
Copyright terms: Public domain | W3C validator |