MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 260 . 2 (𝜒𝜒)
3 biid 260 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1155 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  iinfi  9408  fzolb  13634  brfi1uzind  14455  opfi1uzind  14458  01sqrexlem5  15189  bitsmod  16373  isfunc  17810  txcn  23121  trfil2  23382  isclmp  24604  eulerpartlemn  33368  bnj976  33776  bnj543  33892  bnj594  33911  bnj917  33933  topdifinffinlem  36216  dath  38595  oeord2com  42046  ichexmpl1  46123  elfzolborelfzop1  47153  nnolog2flm1  47229  isthincd2  47611
  Copyright terms: Public domain W3C validator