| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: iinfi 9301 fzolb 13565 brfi1uzind 14415 opfi1uzind 14418 01sqrexlem5 15153 bitsmod 16347 isfunc 17771 txcn 23541 trfil2 23802 isclmp 25024 eulerpartlemn 34394 bnj976 34789 bnj543 34905 bnj594 34924 bnj917 34946 topdifinffinlem 37391 dath 39845 oeord2com 43414 ichexmpl1 47579 grtriproplem 48049 grtrif1o 48052 elfzolborelfzop1 48630 nnolog2flm1 48701 isthincd2 49548 |
| Copyright terms: Public domain | W3C validator |