| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: iinfi 9375 fzolb 13633 brfi1uzind 14480 opfi1uzind 14483 01sqrexlem5 15219 bitsmod 16413 isfunc 17833 txcn 23520 trfil2 23781 isclmp 25004 eulerpartlemn 34379 bnj976 34774 bnj543 34890 bnj594 34909 bnj917 34931 topdifinffinlem 37342 dath 39737 oeord2com 43307 ichexmpl1 47474 grtriproplem 47942 grtrif1o 47945 elfzolborelfzop1 48512 nnolog2flm1 48583 isthincd2 49430 |
| Copyright terms: Public domain | W3C validator |