![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1154 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: iinfi 9455 fzolb 13702 brfi1uzind 14544 opfi1uzind 14547 01sqrexlem5 15282 bitsmod 16470 isfunc 17915 txcn 23650 trfil2 23911 isclmp 25144 eulerpartlemn 34363 bnj976 34770 bnj543 34886 bnj594 34905 bnj917 34927 topdifinffinlem 37330 dath 39719 oeord2com 43301 ichexmpl1 47394 grtriproplem 47844 grtrif1o 47847 elfzolborelfzop1 48365 nnolog2flm1 48440 isthincd2 48838 |
Copyright terms: Public domain | W3C validator |