![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biid 253 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
3 | biid 253 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1200 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ w3a 1113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1115 |
This theorem is referenced by: iinfi 8593 fzolb 12772 brfi1uzind 13570 opfi1uzind 13573 sqrlem5 14365 bitsmod 15532 isfunc 16877 txcn 21801 trfil2 22062 isclmp 23267 eulerpartlemn 30989 bnj976 31395 bnj543 31510 bnj594 31529 bnj917 31551 topdifinffinlem 33741 dath 35812 elfzolborelfzop1 43157 nnolog2flm1 43232 |
Copyright terms: Public domain | W3C validator |