MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1155 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  iinfi  9307  fzolb  13568  brfi1uzind  14415  opfi1uzind  14418  01sqrexlem5  15153  bitsmod  16347  isfunc  17771  txcn  23511  trfil2  23772  isclmp  24995  eulerpartlemn  34355  bnj976  34750  bnj543  34866  bnj594  34885  bnj917  34907  topdifinffinlem  37331  dath  39725  oeord2com  43294  ichexmpl1  47463  grtriproplem  47933  grtrif1o  47936  elfzolborelfzop1  48514  nnolog2flm1  48585  isthincd2  49432
  Copyright terms: Public domain W3C validator