Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | biid 260 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
3 | biid 260 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
4 | 1, 2, 3 | 3anbi123i 1154 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: iinfi 9176 fzolb 13393 brfi1uzind 14212 opfi1uzind 14215 sqrlem5 14958 bitsmod 16143 isfunc 17579 txcn 22777 trfil2 23038 isclmp 24260 eulerpartlemn 32348 bnj976 32757 bnj543 32873 bnj594 32892 bnj917 32914 topdifinffinlem 35518 dath 37750 ichexmpl1 44921 elfzolborelfzop1 45860 nnolog2flm1 45936 isthincd2 46319 |
Copyright terms: Public domain | W3C validator |