MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1156
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 260 . 2 (𝜒𝜒)
3 biid 260 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1154 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  iinfi  9176  fzolb  13393  brfi1uzind  14212  opfi1uzind  14215  sqrlem5  14958  bitsmod  16143  isfunc  17579  txcn  22777  trfil2  23038  isclmp  24260  eulerpartlemn  32348  bnj976  32757  bnj543  32873  bnj594  32892  bnj917  32914  topdifinffinlem  35518  dath  37750  ichexmpl1  44921  elfzolborelfzop1  45860  nnolog2flm1  45936  isthincd2  46319
  Copyright terms: Public domain W3C validator