MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1155 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  iinfi  9434  fzolb  13687  brfi1uzind  14531  opfi1uzind  14534  01sqrexlem5  15270  bitsmod  16460  isfunc  17882  txcn  23569  trfil2  23830  isclmp  25053  eulerpartlemn  34418  bnj976  34813  bnj543  34929  bnj594  34948  bnj917  34970  topdifinffinlem  37370  dath  39760  oeord2com  43302  ichexmpl1  47450  grtriproplem  47918  grtrif1o  47921  elfzolborelfzop1  48462  nnolog2flm1  48537  isthincd2  49290
  Copyright terms: Public domain W3C validator