MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1156
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1154 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  iinfi  9455  fzolb  13702  brfi1uzind  14544  opfi1uzind  14547  01sqrexlem5  15282  bitsmod  16470  isfunc  17915  txcn  23650  trfil2  23911  isclmp  25144  eulerpartlemn  34363  bnj976  34770  bnj543  34886  bnj594  34905  bnj917  34927  topdifinffinlem  37330  dath  39719  oeord2com  43301  ichexmpl1  47394  grtriproplem  47844  grtrif1o  47847  elfzolborelfzop1  48365  nnolog2flm1  48440  isthincd2  48838
  Copyright terms: Public domain W3C validator