MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi1i Structured version   Visualization version   GIF version

Theorem 3anbi1i 1157
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi1i ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2 (𝜑𝜓)
2 biid 261 . 2 (𝜒𝜒)
3 biid 261 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1155 1 ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  iinfi  9375  fzolb  13633  brfi1uzind  14480  opfi1uzind  14483  01sqrexlem5  15219  bitsmod  16413  isfunc  17833  txcn  23520  trfil2  23781  isclmp  25004  eulerpartlemn  34379  bnj976  34774  bnj543  34890  bnj594  34909  bnj917  34931  topdifinffinlem  37342  dath  39737  oeord2com  43307  ichexmpl1  47474  grtriproplem  47942  grtrif1o  47945  elfzolborelfzop1  48512  nnolog2flm1  48583  isthincd2  49430
  Copyright terms: Public domain W3C validator