| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | biid 261 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 3 | biid 261 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: iinfi 9307 fzolb 13568 brfi1uzind 14415 opfi1uzind 14418 01sqrexlem5 15153 bitsmod 16347 isfunc 17771 txcn 23511 trfil2 23772 isclmp 24995 eulerpartlemn 34355 bnj976 34750 bnj543 34866 bnj594 34885 bnj917 34907 topdifinffinlem 37331 dath 39725 oeord2com 43294 ichexmpl1 47463 grtriproplem 47933 grtrif1o 47936 elfzolborelfzop1 48514 nnolog2flm1 48585 isthincd2 49432 |
| Copyright terms: Public domain | W3C validator |