Proof of Theorem 3ccased
| Step | Hyp | Ref
| Expression |
| 1 | | 3ccased.1 |
. . . . 5
⊢ (𝜑 → ((𝜒 ∧ 𝜂) → 𝜓)) |
| 2 | 1 | com12 32 |
. . . 4
⊢ ((𝜒 ∧ 𝜂) → (𝜑 → 𝜓)) |
| 3 | | 3ccased.2 |
. . . . 5
⊢ (𝜑 → ((𝜒 ∧ 𝜁) → 𝜓)) |
| 4 | 3 | com12 32 |
. . . 4
⊢ ((𝜒 ∧ 𝜁) → (𝜑 → 𝜓)) |
| 5 | | 3ccased.3 |
. . . . 5
⊢ (𝜑 → ((𝜒 ∧ 𝜎) → 𝜓)) |
| 6 | 5 | com12 32 |
. . . 4
⊢ ((𝜒 ∧ 𝜎) → (𝜑 → 𝜓)) |
| 7 | 2, 4, 6 | 3jaodan 1433 |
. . 3
⊢ ((𝜒 ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → (𝜑 → 𝜓)) |
| 8 | | 3ccased.4 |
. . . . 5
⊢ (𝜑 → ((𝜃 ∧ 𝜂) → 𝜓)) |
| 9 | 8 | com12 32 |
. . . 4
⊢ ((𝜃 ∧ 𝜂) → (𝜑 → 𝜓)) |
| 10 | | 3ccased.5 |
. . . . 5
⊢ (𝜑 → ((𝜃 ∧ 𝜁) → 𝜓)) |
| 11 | 10 | com12 32 |
. . . 4
⊢ ((𝜃 ∧ 𝜁) → (𝜑 → 𝜓)) |
| 12 | | 3ccased.6 |
. . . . 5
⊢ (𝜑 → ((𝜃 ∧ 𝜎) → 𝜓)) |
| 13 | 12 | com12 32 |
. . . 4
⊢ ((𝜃 ∧ 𝜎) → (𝜑 → 𝜓)) |
| 14 | 9, 11, 13 | 3jaodan 1433 |
. . 3
⊢ ((𝜃 ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → (𝜑 → 𝜓)) |
| 15 | | 3ccased.7 |
. . . . 5
⊢ (𝜑 → ((𝜏 ∧ 𝜂) → 𝜓)) |
| 16 | 15 | com12 32 |
. . . 4
⊢ ((𝜏 ∧ 𝜂) → (𝜑 → 𝜓)) |
| 17 | | 3ccased.8 |
. . . . 5
⊢ (𝜑 → ((𝜏 ∧ 𝜁) → 𝜓)) |
| 18 | 17 | com12 32 |
. . . 4
⊢ ((𝜏 ∧ 𝜁) → (𝜑 → 𝜓)) |
| 19 | | 3ccased.9 |
. . . . 5
⊢ (𝜑 → ((𝜏 ∧ 𝜎) → 𝜓)) |
| 20 | 19 | com12 32 |
. . . 4
⊢ ((𝜏 ∧ 𝜎) → (𝜑 → 𝜓)) |
| 21 | 16, 18, 20 | 3jaodan 1433 |
. . 3
⊢ ((𝜏 ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → (𝜑 → 𝜓)) |
| 22 | 7, 14, 21 | 3jaoian 1432 |
. 2
⊢ (((𝜒 ∨ 𝜃 ∨ 𝜏) ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → (𝜑 → 𝜓)) |
| 23 | 22 | com12 32 |
1
⊢ (𝜑 → (((𝜒 ∨ 𝜃 ∨ 𝜏) ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → 𝜓)) |