Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso3 Structured version   Visualization version   GIF version

Theorem dfso3 35756
Description: Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.)
Assertion
Ref Expression
dfso3 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfso3
StepHypRef Expression
1 ne0i 4286 . . . . 5 (𝑦𝐴𝐴 ≠ ∅)
2 r19.27zv 4451 . . . . 5 (𝐴 ≠ ∅ → (∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
31, 2syl 17 . . . 4 (𝑦𝐴 → (∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
43ralbiia 3076 . . 3 (∀𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
54ralbii 3078 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
6 df-3an 1088 . . . 4 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
76ralbii 3078 . . 3 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
872ralbii 3107 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
9 df-po 5519 . . . 4 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109anbi1i 624 . . 3 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 5520 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 r19.26-2 3117 . . 3 (∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
1310, 11, 123bitr4i 303 . 2 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
145, 8, 133bitr4ri 304 1 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086  wcel 2111  wne 2928  wral 3047  c0 4278   class class class wbr 5086   Po wpo 5517   Or wor 5518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-dif 3900  df-nul 4279  df-po 5519  df-so 5520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator