Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso3 Structured version   Visualization version   GIF version

Theorem dfso3 35700
Description: Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.)
Assertion
Ref Expression
dfso3 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfso3
StepHypRef Expression
1 ne0i 4347 . . . . 5 (𝑦𝐴𝐴 ≠ ∅)
2 r19.27zv 4512 . . . . 5 (𝐴 ≠ ∅ → (∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
31, 2syl 17 . . . 4 (𝑦𝐴 → (∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
43ralbiia 3089 . . 3 (∀𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
54ralbii 3091 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
6 df-3an 1088 . . . 4 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
76ralbii 3091 . . 3 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
872ralbii 3126 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
9 df-po 5597 . . . 4 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109anbi1i 624 . . 3 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 5598 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 r19.26-2 3136 . . 3 (∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
1310, 11, 123bitr4i 303 . 2 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
145, 8, 133bitr4ri 304 1 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086  wcel 2106  wne 2938  wral 3059  c0 4339   class class class wbr 5148   Po wpo 5595   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-dif 3966  df-nul 4340  df-po 5597  df-so 5598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator