| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccased | Structured version Visualization version GIF version | ||
| Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| ccased.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) |
| ccased.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) |
| ccased.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| ccased.4 | ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| ccased | ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccased.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 3 | ccased.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ ((𝜃 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 5 | ccased.3 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) | |
| 6 | 5 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 7 | ccased.4 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) | |
| 8 | 7 | com12 32 | . . 3 ⊢ ((𝜃 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 9 | 2, 4, 6, 8 | ccase 1037 | . 2 ⊢ (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → (𝜑 → 𝜂)) |
| 10 | 9 | com12 32 | 1 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: fvf1pr 7285 resf1extb 7913 fpwwe2lem12 10602 mulge0 11703 zmulcl 12589 lcmabs 16582 pospo 18311 mulgass 19050 indistopon 22895 lgsdir2lem5 27247 outsideofeq 36125 weiunpo 36460 smprngopr 38053 cdlemg33 40712 monotoddzzfi 42938 acongtr 42974 |
| Copyright terms: Public domain | W3C validator |