MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccased Structured version   Visualization version   GIF version

Theorem ccased 1038
Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.)
Hypotheses
Ref Expression
ccased.1 (𝜑 → ((𝜓𝜒) → 𝜂))
ccased.2 (𝜑 → ((𝜃𝜒) → 𝜂))
ccased.3 (𝜑 → ((𝜓𝜏) → 𝜂))
ccased.4 (𝜑 → ((𝜃𝜏) → 𝜂))
Assertion
Ref Expression
ccased (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))

Proof of Theorem ccased
StepHypRef Expression
1 ccased.1 . . . 4 (𝜑 → ((𝜓𝜒) → 𝜂))
21com12 32 . . 3 ((𝜓𝜒) → (𝜑𝜂))
3 ccased.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜂))
43com12 32 . . 3 ((𝜃𝜒) → (𝜑𝜂))
5 ccased.3 . . . 4 (𝜑 → ((𝜓𝜏) → 𝜂))
65com12 32 . . 3 ((𝜓𝜏) → (𝜑𝜂))
7 ccased.4 . . . 4 (𝜑 → ((𝜃𝜏) → 𝜂))
87com12 32 . . 3 ((𝜃𝜏) → (𝜑𝜂))
92, 4, 6, 8ccase 1037 . 2 (((𝜓𝜃) ∧ (𝜒𝜏)) → (𝜑𝜂))
109com12 32 1 (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  fvf1pr  7282  resf1extb  7910  fpwwe2lem12  10595  mulge0  11696  zmulcl  12582  lcmabs  16575  pospo  18304  mulgass  19043  indistopon  22888  lgsdir2lem5  27240  outsideofeq  36118  weiunpo  36453  smprngopr  38046  cdlemg33  40705  monotoddzzfi  42931  acongtr  42967
  Copyright terms: Public domain W3C validator