MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccased Structured version   Visualization version   GIF version

Theorem ccased 1038
Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.)
Hypotheses
Ref Expression
ccased.1 (𝜑 → ((𝜓𝜒) → 𝜂))
ccased.2 (𝜑 → ((𝜃𝜒) → 𝜂))
ccased.3 (𝜑 → ((𝜓𝜏) → 𝜂))
ccased.4 (𝜑 → ((𝜃𝜏) → 𝜂))
Assertion
Ref Expression
ccased (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))

Proof of Theorem ccased
StepHypRef Expression
1 ccased.1 . . . 4 (𝜑 → ((𝜓𝜒) → 𝜂))
21com12 32 . . 3 ((𝜓𝜒) → (𝜑𝜂))
3 ccased.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜂))
43com12 32 . . 3 ((𝜃𝜒) → (𝜑𝜂))
5 ccased.3 . . . 4 (𝜑 → ((𝜓𝜏) → 𝜂))
65com12 32 . . 3 ((𝜓𝜏) → (𝜑𝜂))
7 ccased.4 . . . 4 (𝜑 → ((𝜃𝜏) → 𝜂))
87com12 32 . . 3 ((𝜃𝜏) → (𝜑𝜂))
92, 4, 6, 8ccase 1037 . 2 (((𝜓𝜃) ∧ (𝜒𝜏)) → (𝜑𝜂))
109com12 32 1 (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  fvf1pr  7285  resf1extb  7913  fpwwe2lem12  10602  mulge0  11703  zmulcl  12589  lcmabs  16582  pospo  18311  mulgass  19050  indistopon  22895  lgsdir2lem5  27247  outsideofeq  36125  weiunpo  36460  smprngopr  38053  cdlemg33  40712  monotoddzzfi  42938  acongtr  42974
  Copyright terms: Public domain W3C validator