| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccased | Structured version Visualization version GIF version | ||
| Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| ccased.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) |
| ccased.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) |
| ccased.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) |
| ccased.4 | ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| ccased | ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccased.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 3 | ccased.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ ((𝜃 ∧ 𝜒) → (𝜑 → 𝜂)) |
| 5 | ccased.3 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) | |
| 6 | 5 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 7 | ccased.4 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) | |
| 8 | 7 | com12 32 | . . 3 ⊢ ((𝜃 ∧ 𝜏) → (𝜑 → 𝜂)) |
| 9 | 2, 4, 6, 8 | ccase 1037 | . 2 ⊢ (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → (𝜑 → 𝜂)) |
| 10 | 9 | com12 32 | 1 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: fvf1pr 7248 resf1extb 7874 fpwwe2lem12 10555 mulge0 11656 zmulcl 12542 lcmabs 16534 pospo 18267 mulgass 19008 indistopon 22904 lgsdir2lem5 27256 outsideofeq 36103 weiunpo 36438 smprngopr 38031 cdlemg33 40690 monotoddzzfi 42915 acongtr 42951 |
| Copyright terms: Public domain | W3C validator |