MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccased Structured version   Visualization version   GIF version

Theorem ccased 1038
Description: Deduction for combining cases. (Contributed by NM, 9-May-2004.)
Hypotheses
Ref Expression
ccased.1 (𝜑 → ((𝜓𝜒) → 𝜂))
ccased.2 (𝜑 → ((𝜃𝜒) → 𝜂))
ccased.3 (𝜑 → ((𝜓𝜏) → 𝜂))
ccased.4 (𝜑 → ((𝜃𝜏) → 𝜂))
Assertion
Ref Expression
ccased (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))

Proof of Theorem ccased
StepHypRef Expression
1 ccased.1 . . . 4 (𝜑 → ((𝜓𝜒) → 𝜂))
21com12 32 . . 3 ((𝜓𝜒) → (𝜑𝜂))
3 ccased.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜂))
43com12 32 . . 3 ((𝜃𝜒) → (𝜑𝜂))
5 ccased.3 . . . 4 (𝜑 → ((𝜓𝜏) → 𝜂))
65com12 32 . . 3 ((𝜓𝜏) → (𝜑𝜂))
7 ccased.4 . . . 4 (𝜑 → ((𝜃𝜏) → 𝜂))
87com12 32 . . 3 ((𝜃𝜏) → (𝜑𝜂))
92, 4, 6, 8ccase 1037 . 2 (((𝜓𝜃) ∧ (𝜒𝜏)) → (𝜑𝜂))
109com12 32 1 (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  fvf1pr  7248  resf1extb  7874  fpwwe2lem12  10555  mulge0  11656  zmulcl  12542  lcmabs  16534  pospo  18267  mulgass  19008  indistopon  22904  lgsdir2lem5  27256  outsideofeq  36103  weiunpo  36438  smprngopr  38031  cdlemg33  40690  monotoddzzfi  42915  acongtr  42951
  Copyright terms: Public domain W3C validator