| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaoian | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| 3jaoian.3 | ⊢ ((𝜏 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaoian | ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
| 5 | 3jaoian.3 | . . . 4 ⊢ ((𝜏 ∧ 𝜓) → 𝜒) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜏 → (𝜓 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaoi 1430 | . 2 ⊢ ((𝜑 ∨ 𝜃 ∨ 𝜏) → (𝜓 → 𝜒)) |
| 8 | 7 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 |
| This theorem is referenced by: xrltnsym 13179 xrlttri 13181 xrlttr 13182 qbtwnxr 13242 xltnegi 13258 xaddcom 13282 xnegdi 13290 lcmftp 16673 xaddeq0 32757 3ccased 35719 usgrexmpl2trifr 47996 |
| Copyright terms: Public domain | W3C validator |