| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaoian | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| 3jaoian.3 | ⊢ ((𝜏 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaoian | ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
| 5 | 3jaoian.3 | . . . 4 ⊢ ((𝜏 ∧ 𝜓) → 𝜒) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜏 → (𝜓 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaoi 1430 | . 2 ⊢ ((𝜑 ∨ 𝜃 ∨ 𝜏) → (𝜓 → 𝜒)) |
| 8 | 7 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: xrltnsym 13153 xrlttri 13155 xrlttr 13156 qbtwnxr 13216 xltnegi 13232 xaddcom 13256 xnegdi 13264 lcmftp 16655 xaddeq0 32730 3ccased 35736 usgrexmpl2trifr 48041 |
| Copyright terms: Public domain | W3C validator |