MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaoian Structured version   Visualization version   GIF version

Theorem 3jaoian 1427
Description: Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1 ((𝜑𝜓) → 𝜒)
3jaoian.2 ((𝜃𝜓) → 𝜒)
3jaoian.3 ((𝜏𝜓) → 𝜒)
Assertion
Ref Expression
3jaoian (((𝜑𝜃𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 3jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 412 . . 3 (𝜃 → (𝜓𝜒))
5 3jaoian.3 . . . 4 ((𝜏𝜓) → 𝜒)
65ex 412 . . 3 (𝜏 → (𝜓𝜒))
72, 4, 63jaoi 1425 . 2 ((𝜑𝜃𝜏) → (𝜓𝜒))
87imp 406 1 (((𝜑𝜃𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087
This theorem is referenced by:  xrltnsym  12800  xrlttri  12802  xrlttr  12803  qbtwnxr  12863  xltnegi  12879  xaddcom  12903  xnegdi  12911  lcmftp  16269  xaddeq0  30978  3ccased  33565
  Copyright terms: Public domain W3C validator