| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| 3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaod 1431 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: mpjao3dan 1434 onzsl 7841 zeo 12679 xrltnsym 13153 xrlttri 13155 xrlttr 13156 qbtwnxr 13216 xltnegi 13232 xaddcom 13256 xnegdi 13264 xsubge0 13277 xrub 13328 bpoly3 16074 blssioo 24734 ismbf2d 25593 itg2seq 25695 eliccioo 32905 3ccased 35736 lineelsb2 36166 sticksstones1 42159 dfxlim2v 45876 usgrexmpl2trifr 48041 |
| Copyright terms: Public domain | W3C validator |