MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1433
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 412 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 412 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1431 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 406 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  mpjao3dan  1434  onzsl  7802  zeo  12596  xrltnsym  13073  xrlttri  13075  xrlttr  13076  qbtwnxr  13136  xltnegi  13152  xaddcom  13176  xnegdi  13184  xsubge0  13197  xrub  13248  bpoly3  16000  blssioo  24716  ismbf2d  25574  itg2seq  25676  eliccioo  32901  3ccased  35699  lineelsb2  36129  sticksstones1  42127  dfxlim2v  45838  usgrexmpl2trifr  48021
  Copyright terms: Public domain W3C validator