MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1433
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 412 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 412 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1431 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 406 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  mpjao3dan  1434  onzsl  7776  zeo  12559  xrltnsym  13036  xrlttri  13038  xrlttr  13039  qbtwnxr  13099  xltnegi  13115  xaddcom  13139  xnegdi  13147  xsubge0  13160  xrub  13211  bpoly3  15965  blssioo  24710  ismbf2d  25568  itg2seq  25670  eliccioo  32911  3ccased  35763  lineelsb2  36192  sticksstones1  42238  dfxlim2v  45944  usgrexmpl2trifr  48136
  Copyright terms: Public domain W3C validator