![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
Ref | Expression |
---|---|
3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 413 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
6 | 5 | ex 413 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
7 | 2, 4, 6 | 3jaod 1428 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
8 | 7 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 |
This theorem is referenced by: mpjao3dan 1431 onzsl 7831 zeo 12644 xrltnsym 13112 xrlttri 13114 xrlttr 13115 qbtwnxr 13175 xltnegi 13191 xaddcom 13215 xnegdi 13223 xsubge0 13236 xrub 13287 bpoly3 15998 blssioo 24302 ismbf2d 25148 itg2seq 25251 eliccioo 32084 3ccased 34676 lineelsb2 35108 sticksstones1 40950 dfxlim2v 44549 |
Copyright terms: Public domain | W3C validator |