| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| 3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaod 1431 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: mpjao3dan 1434 onzsl 7776 zeo 12559 xrltnsym 13036 xrlttri 13038 xrlttr 13039 qbtwnxr 13099 xltnegi 13115 xaddcom 13139 xnegdi 13147 xsubge0 13160 xrub 13211 bpoly3 15965 blssioo 24710 ismbf2d 25568 itg2seq 25670 eliccioo 32911 3ccased 35763 lineelsb2 36192 sticksstones1 42238 dfxlim2v 45944 usgrexmpl2trifr 48136 |
| Copyright terms: Public domain | W3C validator |