MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1433
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 412 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 412 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1431 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 406 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  mpjao3dan  1434  onzsl  7841  zeo  12679  xrltnsym  13153  xrlttri  13155  xrlttr  13156  qbtwnxr  13216  xltnegi  13232  xaddcom  13256  xnegdi  13264  xsubge0  13277  xrub  13328  bpoly3  16074  blssioo  24734  ismbf2d  25593  itg2seq  25695  eliccioo  32905  3ccased  35736  lineelsb2  36166  sticksstones1  42159  dfxlim2v  45876  usgrexmpl2trifr  48041
  Copyright terms: Public domain W3C validator