MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1430
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 414 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 414 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 414 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1428 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 408 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089
This theorem is referenced by:  mpjao3dan  1431  onzsl  7725  zeo  12452  xrltnsym  12917  xrlttri  12919  xrlttr  12920  qbtwnxr  12980  xltnegi  12996  xaddcom  13020  xnegdi  13028  xsubge0  13041  xrub  13092  bpoly3  15813  blssioo  24003  ismbf2d  24849  itg2seq  24952  eliccioo  31250  3ccased  33708  lineelsb2  34495  sticksstones1  40144  dfxlim2v  43437
  Copyright terms: Public domain W3C validator