![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
Ref | Expression |
---|---|
3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 411 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 411 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
6 | 5 | ex 411 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
7 | 2, 4, 6 | 3jaod 1426 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
8 | 7 | imp 405 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ w3o 1083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 |
This theorem is referenced by: mpjao3dan 1429 onzsl 7856 zeo 12700 xrltnsym 13170 xrlttri 13172 xrlttr 13173 qbtwnxr 13233 xltnegi 13249 xaddcom 13273 xnegdi 13281 xsubge0 13294 xrub 13345 bpoly3 16060 blssioo 24802 ismbf2d 25660 itg2seq 25763 eliccioo 32792 3ccased 35541 lineelsb2 35972 sticksstones1 41844 dfxlim2v 45468 |
Copyright terms: Public domain | W3C validator |