| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| 3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaod 1431 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: mpjao3dan 1434 onzsl 7822 zeo 12620 xrltnsym 13097 xrlttri 13099 xrlttr 13100 qbtwnxr 13160 xltnegi 13176 xaddcom 13200 xnegdi 13208 xsubge0 13221 xrub 13272 bpoly3 16024 blssioo 24683 ismbf2d 25541 itg2seq 25643 eliccioo 32851 3ccased 35706 lineelsb2 36136 sticksstones1 42134 dfxlim2v 45845 usgrexmpl2trifr 48028 |
| Copyright terms: Public domain | W3C validator |