MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1433
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 412 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 412 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1431 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 406 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  mpjao3dan  1434  onzsl  7825  zeo  12627  xrltnsym  13104  xrlttri  13106  xrlttr  13107  qbtwnxr  13167  xltnegi  13183  xaddcom  13207  xnegdi  13215  xsubge0  13228  xrub  13279  bpoly3  16031  blssioo  24690  ismbf2d  25548  itg2seq  25650  eliccioo  32858  3ccased  35713  lineelsb2  36143  sticksstones1  42141  dfxlim2v  45852  usgrexmpl2trifr  48032
  Copyright terms: Public domain W3C validator