Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
Ref | Expression |
---|---|
3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
7 | 2, 4, 6 | 3jaod 1426 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 |
This theorem is referenced by: mpjao3dan 1429 onzsl 7681 zeo 12389 xrltnsym 12853 xrlttri 12855 xrlttr 12856 qbtwnxr 12916 xltnegi 12932 xaddcom 12956 xnegdi 12964 xsubge0 12977 xrub 13028 bpoly3 15749 blssioo 23939 ismbf2d 24785 itg2seq 24888 eliccioo 31184 3ccased 33642 lineelsb2 34429 sticksstones1 40082 dfxlim2v 43342 |
Copyright terms: Public domain | W3C validator |