![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
Ref | Expression |
---|---|
3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
7 | 2, 4, 6 | 3jaod 1429 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 |
This theorem is referenced by: mpjao3dan 1432 onzsl 7883 zeo 12729 xrltnsym 13199 xrlttri 13201 xrlttr 13202 qbtwnxr 13262 xltnegi 13278 xaddcom 13302 xnegdi 13310 xsubge0 13323 xrub 13374 bpoly3 16106 blssioo 24836 ismbf2d 25694 itg2seq 25797 eliccioo 32895 3ccased 35681 lineelsb2 36112 sticksstones1 42103 dfxlim2v 45768 usgrexmpl2trifr 47852 |
Copyright terms: Public domain | W3C validator |