MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1433
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 412 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 412 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1431 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 406 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  mpjao3dan  1434  onzsl  7822  zeo  12620  xrltnsym  13097  xrlttri  13099  xrlttr  13100  qbtwnxr  13160  xltnegi  13176  xaddcom  13200  xnegdi  13208  xsubge0  13221  xrub  13272  bpoly3  16024  blssioo  24683  ismbf2d  25541  itg2seq  25643  eliccioo  32851  3ccased  35706  lineelsb2  36136  sticksstones1  42134  dfxlim2v  45845  usgrexmpl2trifr  48028
  Copyright terms: Public domain W3C validator