| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaodan | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| 3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaod 1431 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: mpjao3dan 1434 onzsl 7825 zeo 12627 xrltnsym 13104 xrlttri 13106 xrlttr 13107 qbtwnxr 13167 xltnegi 13183 xaddcom 13207 xnegdi 13215 xsubge0 13228 xrub 13279 bpoly3 16031 blssioo 24690 ismbf2d 25548 itg2seq 25650 eliccioo 32858 3ccased 35713 lineelsb2 36143 sticksstones1 42141 dfxlim2v 45852 usgrexmpl2trifr 48032 |
| Copyright terms: Public domain | W3C validator |