MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1430
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 413 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 413 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 413 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1428 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 407 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089
This theorem is referenced by:  mpjao3dan  1431  onzsl  7831  zeo  12644  xrltnsym  13112  xrlttri  13114  xrlttr  13115  qbtwnxr  13175  xltnegi  13191  xaddcom  13215  xnegdi  13223  xsubge0  13236  xrub  13287  bpoly3  15998  blssioo  24302  ismbf2d  25148  itg2seq  25251  eliccioo  32084  3ccased  34676  lineelsb2  35108  sticksstones1  40950  dfxlim2v  44549
  Copyright terms: Public domain W3C validator