MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaodan Structured version   Visualization version   GIF version

Theorem 3jaodan 1428
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 411 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 411 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 411 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1426 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 405 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3o 1083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086
This theorem is referenced by:  mpjao3dan  1429  onzsl  7856  zeo  12700  xrltnsym  13170  xrlttri  13172  xrlttr  13173  qbtwnxr  13233  xltnegi  13249  xaddcom  13273  xnegdi  13281  xsubge0  13294  xrub  13345  bpoly3  16060  blssioo  24802  ismbf2d  25660  itg2seq  25763  eliccioo  32792  3ccased  35541  lineelsb2  35972  sticksstones1  41844  dfxlim2v  45468
  Copyright terms: Public domain W3C validator