MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1i Structured version   Visualization version   GIF version

Theorem 3mix1i 1425
Description: Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypothesis
Ref Expression
3mixi.1 𝜑
Assertion
Ref Expression
3mix1i (𝜑𝜓𝜒)

Proof of Theorem 3mix1i
StepHypRef Expression
1 3mixi.1 . 2 𝜑
2 3mix1 1422 . 2 (𝜑 → (𝜑𝜓𝜒))
31, 2ax-mp 5 1 (𝜑𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  w3o 1099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-or 866  df-3or 1101
This theorem is referenced by:  tpid1  4505  0z  11673  ppiublem2  25164  tpid1g  39830
  Copyright terms: Public domain W3C validator