MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid1 Structured version   Visualization version   GIF version

Theorem tpid1 4701
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid1.1 𝐴 ∈ V
Assertion
Ref Expression
tpid1 𝐴 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid1
StepHypRef Expression
1 eqid 2738 . . 3 𝐴 = 𝐴
213mix1i 1331 . 2 (𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶)
3 tpid1.1 . . 3 𝐴 ∈ V
43eltp 4621 . 2 (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶))
52, 4mpbir 230 1 𝐴 ∈ {𝐴, 𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  w3o 1084   = wceq 1539  wcel 2108  Vcvv 3422  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  tpnz  4712  wrdl3s3  14605  cffldtocusgr  27717  umgrwwlks2on  28223  s3rn  31122  cyc3evpm  31319  sgnsf  31331  sgncl  32405  prodfzo03  32483  circlevma  32522  circlemethhgt  32523  hgt750lemg  32534  hgt750lemb  32536  hgt750lema  32537  hgt750leme  32538  tgoldbachgtde  32540  tgoldbachgt  32543  kur14lem7  33074  kur14lem9  33076  brtpid1  33567  rabren3dioph  40553  fourierdlem102  43639  fourierdlem114  43651  etransclem48  43713
  Copyright terms: Public domain W3C validator