Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1332 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | eltp 4636 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {ctp 4577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3903 df-sn 4574 df-pr 4576 df-tp 4578 |
This theorem is referenced by: tpnz 4727 wrdl3s3 14776 cffldtocusgr 28103 umgrwwlks2on 28610 s3rn 31507 cyc3evpm 31704 sgnsf 31716 sgncl 32805 prodfzo03 32883 circlevma 32922 circlemethhgt 32923 hgt750lemg 32934 hgt750lemb 32936 hgt750lema 32937 hgt750leme 32938 tgoldbachgtde 32940 tgoldbachgt 32943 kur14lem7 33473 kur14lem9 33475 brtpid1 33962 rabren3dioph 40907 fourierdlem102 44093 fourierdlem114 44105 etransclem48 44167 |
Copyright terms: Public domain | W3C validator |