| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix1i 1334 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
| 3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eltp 4643 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 df-tp 4584 |
| This theorem is referenced by: tpnz 4733 hash3tpb 14420 wrdl3s3 14887 cffldtocusgr 29410 cffldtocusgrOLD 29411 umgrwwlks2on 29920 sgncl 32789 s3rnOLD 32900 cyc3evpm 33105 sgnsf 33117 prodfzo03 34570 circlevma 34609 circlemethhgt 34610 hgt750lemg 34621 hgt750lemb 34623 hgt750lema 34624 hgt750leme 34625 tgoldbachgtde 34627 tgoldbachgt 34630 kur14lem7 35184 kur14lem9 35186 brtpid1 35693 rabren3dioph 42788 fourierdlem102 46190 fourierdlem114 46202 etransclem48 46264 usgrexmpl1tri 48010 usgrexmpl2nb0 48016 usgrexmpl2nb1 48017 usgrexmpl2nb2 48018 usgrexmpl2nb3 48019 usgrexmpl2nb4 48020 usgrexmpl2nb5 48021 gpg3kgrtriex 48074 |
| Copyright terms: Public domain | W3C validator |