| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix1i 1334 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
| 3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eltp 4656 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: tpnz 4746 hash3tpb 14467 wrdl3s3 14935 cffldtocusgr 29381 cffldtocusgrOLD 29382 umgrwwlks2on 29894 sgncl 32763 s3rnOLD 32874 cyc3evpm 33114 sgnsf 33126 prodfzo03 34601 circlevma 34640 circlemethhgt 34641 hgt750lemg 34652 hgt750lemb 34654 hgt750lema 34655 hgt750leme 34656 tgoldbachgtde 34658 tgoldbachgt 34661 kur14lem7 35206 kur14lem9 35208 brtpid1 35715 rabren3dioph 42810 fourierdlem102 46213 fourierdlem114 46225 etransclem48 46287 usgrexmpl1tri 48020 usgrexmpl2nb0 48026 usgrexmpl2nb1 48027 usgrexmpl2nb2 48028 usgrexmpl2nb3 48029 usgrexmpl2nb4 48030 usgrexmpl2nb5 48031 gpg3kgrtriex 48084 |
| Copyright terms: Public domain | W3C validator |