| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix1i 1334 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
| 3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eltp 4641 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {ctp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 df-tp 4580 |
| This theorem is referenced by: tpnz 4731 hash3tpb 14404 wrdl3s3 14871 cffldtocusgr 29427 cffldtocusgrOLD 29428 usgrwwlks2on 29938 umgrwwlks2on 29939 sgncl 32819 s3rnOLD 32934 cyc3evpm 33126 sgnsf 33138 prodfzo03 34637 circlevma 34676 circlemethhgt 34677 hgt750lemg 34688 hgt750lemb 34690 hgt750lema 34691 hgt750leme 34692 tgoldbachgtde 34694 tgoldbachgt 34697 kur14lem7 35277 kur14lem9 35279 brtpid1 35786 rabren3dioph 42933 fourierdlem102 46331 fourierdlem114 46343 etransclem48 46405 usgrexmpl1tri 48150 usgrexmpl2nb0 48156 usgrexmpl2nb1 48157 usgrexmpl2nb2 48158 usgrexmpl2nb3 48159 usgrexmpl2nb4 48160 usgrexmpl2nb5 48161 gpg3kgrtriex 48214 |
| Copyright terms: Public domain | W3C validator |