| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix1i 1334 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
| 3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eltp 4642 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: tpnz 4732 hash3tpb 14402 wrdl3s3 14869 cffldtocusgr 29426 cffldtocusgrOLD 29427 umgrwwlks2on 29936 sgncl 32812 s3rnOLD 32925 cyc3evpm 33117 sgnsf 33129 prodfzo03 34614 circlevma 34653 circlemethhgt 34654 hgt750lemg 34665 hgt750lemb 34667 hgt750lema 34668 hgt750leme 34669 tgoldbachgtde 34671 tgoldbachgt 34674 kur14lem7 35254 kur14lem9 35256 brtpid1 35763 rabren3dioph 42854 fourierdlem102 46252 fourierdlem114 46264 etransclem48 46326 usgrexmpl1tri 48062 usgrexmpl2nb0 48068 usgrexmpl2nb1 48069 usgrexmpl2nb2 48070 usgrexmpl2nb3 48071 usgrexmpl2nb4 48072 usgrexmpl2nb5 48073 gpg3kgrtriex 48126 |
| Copyright terms: Public domain | W3C validator |