Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1332 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | eltp 4624 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: tpnz 4715 wrdl3s3 14677 cffldtocusgr 27814 umgrwwlks2on 28322 s3rn 31220 cyc3evpm 31417 sgnsf 31429 sgncl 32505 prodfzo03 32583 circlevma 32622 circlemethhgt 32623 hgt750lemg 32634 hgt750lemb 32636 hgt750lema 32637 hgt750leme 32638 tgoldbachgtde 32640 tgoldbachgt 32643 kur14lem7 33174 kur14lem9 33176 brtpid1 33665 rabren3dioph 40637 fourierdlem102 43749 fourierdlem114 43761 etransclem48 43823 |
Copyright terms: Public domain | W3C validator |