Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1331 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | eltp 4621 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 df-tp 4563 |
This theorem is referenced by: tpnz 4712 wrdl3s3 14605 cffldtocusgr 27717 umgrwwlks2on 28223 s3rn 31122 cyc3evpm 31319 sgnsf 31331 sgncl 32405 prodfzo03 32483 circlevma 32522 circlemethhgt 32523 hgt750lemg 32534 hgt750lemb 32536 hgt750lema 32537 hgt750leme 32538 tgoldbachgtde 32540 tgoldbachgt 32543 kur14lem7 33074 kur14lem9 33076 brtpid1 33567 rabren3dioph 40553 fourierdlem102 43639 fourierdlem114 43651 etransclem48 43713 |
Copyright terms: Public domain | W3C validator |