| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix1i 1334 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
| 3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3 | eltp 4653 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: tpnz 4743 hash3tpb 14460 wrdl3s3 14928 cffldtocusgr 29374 cffldtocusgrOLD 29375 umgrwwlks2on 29887 sgncl 32756 s3rnOLD 32867 cyc3evpm 33107 sgnsf 33119 prodfzo03 34594 circlevma 34633 circlemethhgt 34634 hgt750lemg 34645 hgt750lemb 34647 hgt750lema 34648 hgt750leme 34649 tgoldbachgtde 34651 tgoldbachgt 34654 kur14lem7 35199 kur14lem9 35201 brtpid1 35708 rabren3dioph 42803 fourierdlem102 46206 fourierdlem114 46218 etransclem48 46280 usgrexmpl1tri 48016 usgrexmpl2nb0 48022 usgrexmpl2nb1 48023 usgrexmpl2nb2 48024 usgrexmpl2nb3 48025 usgrexmpl2nb4 48026 usgrexmpl2nb5 48027 gpg3kgrtriex 48080 |
| Copyright terms: Public domain | W3C validator |