Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid1 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tpid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1335 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶) |
3 | tpid1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | eltp 4604 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
5 | 2, 4 | mpbir 234 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1088 = wceq 1543 ∈ wcel 2110 Vcvv 3408 {ctp 4545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-un 3871 df-sn 4542 df-pr 4544 df-tp 4546 |
This theorem is referenced by: tpnz 4695 wrdl3s3 14529 cffldtocusgr 27535 umgrwwlks2on 28041 s3rn 30940 cyc3evpm 31136 sgnsf 31148 sgncl 32217 prodfzo03 32295 circlevma 32334 circlemethhgt 32335 hgt750lemg 32346 hgt750lemb 32348 hgt750lema 32349 hgt750leme 32350 tgoldbachgtde 32352 tgoldbachgt 32355 kur14lem7 32887 kur14lem9 32889 brtpid1 33380 rabren3dioph 40340 fourierdlem102 43424 fourierdlem114 43436 etransclem48 43498 |
Copyright terms: Public domain | W3C validator |