Proof of Theorem ppiublem2
Step | Hyp | Ref
| Expression |
1 | | prmz 16380 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 𝑃 ∈ ℤ) |
3 | | 6nn 12062 |
. . . 4
⊢ 6 ∈
ℕ |
4 | | zmodfz 13613 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 6 ∈
ℕ) → (𝑃 mod 6)
∈ (0...(6 − 1))) |
5 | 2, 3, 4 | sylancl 586 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (𝑃 mod 6) ∈ (0...(6 −
1))) |
6 | | 6m1e5 12104 |
. . . 4
⊢ (6
− 1) = 5 |
7 | 6 | oveq2i 7286 |
. . 3
⊢ (0...(6
− 1)) = (0...5) |
8 | 5, 7 | eleqtrdi 2849 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (𝑃 mod 6) ∈
(0...5)) |
9 | | 6re 12063 |
. . . . . . . . . . 11
⊢ 6 ∈
ℝ |
10 | 9 | leidi 11509 |
. . . . . . . . . 10
⊢ 6 ≤
6 |
11 | | noel 4264 |
. . . . . . . . . . . . 13
⊢ ¬
(𝑃 mod 6) ∈
∅ |
12 | 11 | pm2.21i 119 |
. . . . . . . . . . . 12
⊢ ((𝑃 mod 6) ∈ ∅ →
(𝑃 mod 6) ∈ {1,
5}) |
13 | | 5lt6 12154 |
. . . . . . . . . . . . 13
⊢ 5 <
6 |
14 | 3 | nnzi 12344 |
. . . . . . . . . . . . . 14
⊢ 6 ∈
ℤ |
15 | | 5nn 12059 |
. . . . . . . . . . . . . . 15
⊢ 5 ∈
ℕ |
16 | 15 | nnzi 12344 |
. . . . . . . . . . . . . 14
⊢ 5 ∈
ℤ |
17 | | fzn 13272 |
. . . . . . . . . . . . . 14
⊢ ((6
∈ ℤ ∧ 5 ∈ ℤ) → (5 < 6 ↔ (6...5) =
∅)) |
18 | 14, 16, 17 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ (5 < 6
↔ (6...5) = ∅) |
19 | 13, 18 | mpbi 229 |
. . . . . . . . . . . 12
⊢ (6...5) =
∅ |
20 | 12, 19 | eleq2s 2857 |
. . . . . . . . . . 11
⊢ ((𝑃 mod 6) ∈ (6...5) →
(𝑃 mod 6) ∈ {1,
5}) |
21 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (6...5) →
(𝑃 mod 6) ∈ {1,
5})) |
22 | 10, 21 | pm3.2i 471 |
. . . . . . . . 9
⊢ (6 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (6...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
23 | | 5nn0 12253 |
. . . . . . . . 9
⊢ 5 ∈
ℕ0 |
24 | | df-6 12040 |
. . . . . . . . 9
⊢ 6 = (5 +
1) |
25 | 15 | elexi 3451 |
. . . . . . . . . . 11
⊢ 5 ∈
V |
26 | 25 | prid2 4699 |
. . . . . . . . . 10
⊢ 5 ∈
{1, 5} |
27 | 26 | 3mix3i 1334 |
. . . . . . . . 9
⊢ (2
∥ 5 ∨ 3 ∥ 5 ∨ 5 ∈ {1, 5}) |
28 | 22, 23, 24, 27 | ppiublem1 26350 |
. . . . . . . 8
⊢ (5 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (5...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
29 | | 4nn0 12252 |
. . . . . . . 8
⊢ 4 ∈
ℕ0 |
30 | | df-5 12039 |
. . . . . . . 8
⊢ 5 = (4 +
1) |
31 | | z4even 16081 |
. . . . . . . . 9
⊢ 2 ∥
4 |
32 | 31 | 3mix1i 1332 |
. . . . . . . 8
⊢ (2
∥ 4 ∨ 3 ∥ 4 ∨ 4 ∈ {1, 5}) |
33 | 28, 29, 30, 32 | ppiublem1 26350 |
. . . . . . 7
⊢ (4 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (4...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
34 | | 3nn0 12251 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
35 | | df-4 12038 |
. . . . . . 7
⊢ 4 = (3 +
1) |
36 | | 3z 12353 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
37 | | iddvds 15979 |
. . . . . . . . 9
⊢ (3 ∈
ℤ → 3 ∥ 3) |
38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
⊢ 3 ∥
3 |
39 | 38 | 3mix2i 1333 |
. . . . . . 7
⊢ (2
∥ 3 ∨ 3 ∥ 3 ∨ 3 ∈ {1, 5}) |
40 | 33, 34, 35, 39 | ppiublem1 26350 |
. . . . . 6
⊢ (3 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (3...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
41 | | 2nn0 12250 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
42 | | df-3 12037 |
. . . . . 6
⊢ 3 = (2 +
1) |
43 | | z2even 16079 |
. . . . . . 7
⊢ 2 ∥
2 |
44 | 43 | 3mix1i 1332 |
. . . . . 6
⊢ (2
∥ 2 ∨ 3 ∥ 2 ∨ 2 ∈ {1, 5}) |
45 | 40, 41, 42, 44 | ppiublem1 26350 |
. . . . 5
⊢ (2 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (2...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
46 | | 1nn0 12249 |
. . . . 5
⊢ 1 ∈
ℕ0 |
47 | | df-2 12036 |
. . . . 5
⊢ 2 = (1 +
1) |
48 | | 1ex 10971 |
. . . . . . 7
⊢ 1 ∈
V |
49 | 48 | prid1 4698 |
. . . . . 6
⊢ 1 ∈
{1, 5} |
50 | 49 | 3mix3i 1334 |
. . . . 5
⊢ (2
∥ 1 ∨ 3 ∥ 1 ∨ 1 ∈ {1, 5}) |
51 | 45, 46, 47, 50 | ppiublem1 26350 |
. . . 4
⊢ (1 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (1...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
52 | | 0nn0 12248 |
. . . 4
⊢ 0 ∈
ℕ0 |
53 | | 1e0p1 12479 |
. . . 4
⊢ 1 = (0 +
1) |
54 | | z0even 16076 |
. . . . 5
⊢ 2 ∥
0 |
55 | 54 | 3mix1i 1332 |
. . . 4
⊢ (2
∥ 0 ∨ 3 ∥ 0 ∨ 0 ∈ {1, 5}) |
56 | 51, 52, 53, 55 | ppiublem1 26350 |
. . 3
⊢ (0 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (0...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
57 | 56 | simpri 486 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (0...5) →
(𝑃 mod 6) ∈ {1,
5})) |
58 | 8, 57 | mpd 15 |
1
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (𝑃 mod 6) ∈ {1,
5}) |