MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem2 Structured version   Visualization version   GIF version

Theorem ppiublem2 27114
Description: A prime greater than 3 does not divide 2 or 3, so its residue mod 6 is 1 or 5. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
ppiublem2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ {1, 5})

Proof of Theorem ppiublem2
StepHypRef Expression
1 prmz 16645 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
21adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
3 6nn 12275 . . . 4 6 ∈ ℕ
4 zmodfz 13855 . . . 4 ((𝑃 ∈ ℤ ∧ 6 ∈ ℕ) → (𝑃 mod 6) ∈ (0...(6 − 1)))
52, 3, 4sylancl 586 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ (0...(6 − 1)))
6 6m1e5 12312 . . . 4 (6 − 1) = 5
76oveq2i 7398 . . 3 (0...(6 − 1)) = (0...5)
85, 7eleqtrdi 2838 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ (0...5))
9 6re 12276 . . . . . . . . . . 11 6 ∈ ℝ
109leidi 11712 . . . . . . . . . 10 6 ≤ 6
11 noel 4301 . . . . . . . . . . . . 13 ¬ (𝑃 mod 6) ∈ ∅
1211pm2.21i 119 . . . . . . . . . . . 12 ((𝑃 mod 6) ∈ ∅ → (𝑃 mod 6) ∈ {1, 5})
13 5lt6 12362 . . . . . . . . . . . . 13 5 < 6
143nnzi 12557 . . . . . . . . . . . . . 14 6 ∈ ℤ
15 5nn 12272 . . . . . . . . . . . . . . 15 5 ∈ ℕ
1615nnzi 12557 . . . . . . . . . . . . . 14 5 ∈ ℤ
17 fzn 13501 . . . . . . . . . . . . . 14 ((6 ∈ ℤ ∧ 5 ∈ ℤ) → (5 < 6 ↔ (6...5) = ∅))
1814, 16, 17mp2an 692 . . . . . . . . . . . . 13 (5 < 6 ↔ (6...5) = ∅)
1913, 18mpbi 230 . . . . . . . . . . . 12 (6...5) = ∅
2012, 19eleq2s 2846 . . . . . . . . . . 11 ((𝑃 mod 6) ∈ (6...5) → (𝑃 mod 6) ∈ {1, 5})
2120a1i 11 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (6...5) → (𝑃 mod 6) ∈ {1, 5}))
2210, 21pm3.2i 470 . . . . . . . . 9 (6 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (6...5) → (𝑃 mod 6) ∈ {1, 5})))
23 5nn0 12462 . . . . . . . . 9 5 ∈ ℕ0
24 df-6 12253 . . . . . . . . 9 6 = (5 + 1)
2515elexi 3470 . . . . . . . . . . 11 5 ∈ V
2625prid2 4727 . . . . . . . . . 10 5 ∈ {1, 5}
27263mix3i 1336 . . . . . . . . 9 (2 ∥ 5 ∨ 3 ∥ 5 ∨ 5 ∈ {1, 5})
2822, 23, 24, 27ppiublem1 27113 . . . . . . . 8 (5 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (5...5) → (𝑃 mod 6) ∈ {1, 5})))
29 4nn0 12461 . . . . . . . 8 4 ∈ ℕ0
30 df-5 12252 . . . . . . . 8 5 = (4 + 1)
31 z4even 16342 . . . . . . . . 9 2 ∥ 4
32313mix1i 1334 . . . . . . . 8 (2 ∥ 4 ∨ 3 ∥ 4 ∨ 4 ∈ {1, 5})
3328, 29, 30, 32ppiublem1 27113 . . . . . . 7 (4 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (4...5) → (𝑃 mod 6) ∈ {1, 5})))
34 3nn0 12460 . . . . . . 7 3 ∈ ℕ0
35 df-4 12251 . . . . . . 7 4 = (3 + 1)
36 3z 12566 . . . . . . . . 9 3 ∈ ℤ
37 iddvds 16239 . . . . . . . . 9 (3 ∈ ℤ → 3 ∥ 3)
3836, 37ax-mp 5 . . . . . . . 8 3 ∥ 3
39383mix2i 1335 . . . . . . 7 (2 ∥ 3 ∨ 3 ∥ 3 ∨ 3 ∈ {1, 5})
4033, 34, 35, 39ppiublem1 27113 . . . . . 6 (3 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (3...5) → (𝑃 mod 6) ∈ {1, 5})))
41 2nn0 12459 . . . . . 6 2 ∈ ℕ0
42 df-3 12250 . . . . . 6 3 = (2 + 1)
43 z2even 16340 . . . . . . 7 2 ∥ 2
44433mix1i 1334 . . . . . 6 (2 ∥ 2 ∨ 3 ∥ 2 ∨ 2 ∈ {1, 5})
4540, 41, 42, 44ppiublem1 27113 . . . . 5 (2 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (2...5) → (𝑃 mod 6) ∈ {1, 5})))
46 1nn0 12458 . . . . 5 1 ∈ ℕ0
47 df-2 12249 . . . . 5 2 = (1 + 1)
48 1ex 11170 . . . . . . 7 1 ∈ V
4948prid1 4726 . . . . . 6 1 ∈ {1, 5}
50493mix3i 1336 . . . . 5 (2 ∥ 1 ∨ 3 ∥ 1 ∨ 1 ∈ {1, 5})
5145, 46, 47, 50ppiublem1 27113 . . . 4 (1 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (1...5) → (𝑃 mod 6) ∈ {1, 5})))
52 0nn0 12457 . . . 4 0 ∈ ℕ0
53 1e0p1 12691 . . . 4 1 = (0 + 1)
54 z0even 16337 . . . . 5 2 ∥ 0
55543mix1i 1334 . . . 4 (2 ∥ 0 ∨ 3 ∥ 0 ∨ 0 ∈ {1, 5})
5651, 52, 53, 55ppiublem1 27113 . . 3 (0 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (0...5) → (𝑃 mod 6) ∈ {1, 5})))
5756simpri 485 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (0...5) → (𝑃 mod 6) ∈ {1, 5}))
588, 57mpd 15 1 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ {1, 5})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4296  {cpr 4591   class class class wbr 5107  (class class class)co 7387  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  cz 12529  ...cfz 13468   mod cmo 13831  cdvds 16222  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642
This theorem is referenced by:  ppiub  27115
  Copyright terms: Public domain W3C validator