MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem2 Structured version   Visualization version   GIF version

Theorem ppiublem2 25773
Description: A prime greater than 3 does not divide 2 or 3, so its residue mod 6 is 1 or 5. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
ppiublem2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ {1, 5})

Proof of Theorem ppiublem2
StepHypRef Expression
1 prmz 16013 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
21adantr 483 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
3 6nn 11720 . . . 4 6 ∈ ℕ
4 zmodfz 13255 . . . 4 ((𝑃 ∈ ℤ ∧ 6 ∈ ℕ) → (𝑃 mod 6) ∈ (0...(6 − 1)))
52, 3, 4sylancl 588 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ (0...(6 − 1)))
6 6m1e5 11762 . . . 4 (6 − 1) = 5
76oveq2i 7161 . . 3 (0...(6 − 1)) = (0...5)
85, 7eleqtrdi 2923 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ (0...5))
9 6re 11721 . . . . . . . . . . 11 6 ∈ ℝ
109leidi 11168 . . . . . . . . . 10 6 ≤ 6
11 noel 4295 . . . . . . . . . . . . 13 ¬ (𝑃 mod 6) ∈ ∅
1211pm2.21i 119 . . . . . . . . . . . 12 ((𝑃 mod 6) ∈ ∅ → (𝑃 mod 6) ∈ {1, 5})
13 5lt6 11812 . . . . . . . . . . . . 13 5 < 6
143nnzi 12000 . . . . . . . . . . . . . 14 6 ∈ ℤ
15 5nn 11717 . . . . . . . . . . . . . . 15 5 ∈ ℕ
1615nnzi 12000 . . . . . . . . . . . . . 14 5 ∈ ℤ
17 fzn 12917 . . . . . . . . . . . . . 14 ((6 ∈ ℤ ∧ 5 ∈ ℤ) → (5 < 6 ↔ (6...5) = ∅))
1814, 16, 17mp2an 690 . . . . . . . . . . . . 13 (5 < 6 ↔ (6...5) = ∅)
1913, 18mpbi 232 . . . . . . . . . . . 12 (6...5) = ∅
2012, 19eleq2s 2931 . . . . . . . . . . 11 ((𝑃 mod 6) ∈ (6...5) → (𝑃 mod 6) ∈ {1, 5})
2120a1i 11 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (6...5) → (𝑃 mod 6) ∈ {1, 5}))
2210, 21pm3.2i 473 . . . . . . . . 9 (6 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (6...5) → (𝑃 mod 6) ∈ {1, 5})))
23 5nn0 11911 . . . . . . . . 9 5 ∈ ℕ0
24 df-6 11698 . . . . . . . . 9 6 = (5 + 1)
2515elexi 3513 . . . . . . . . . . 11 5 ∈ V
2625prid2 4692 . . . . . . . . . 10 5 ∈ {1, 5}
27263mix3i 1331 . . . . . . . . 9 (2 ∥ 5 ∨ 3 ∥ 5 ∨ 5 ∈ {1, 5})
2822, 23, 24, 27ppiublem1 25772 . . . . . . . 8 (5 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (5...5) → (𝑃 mod 6) ∈ {1, 5})))
29 4nn0 11910 . . . . . . . 8 4 ∈ ℕ0
30 df-5 11697 . . . . . . . 8 5 = (4 + 1)
31 z4even 15717 . . . . . . . . 9 2 ∥ 4
32313mix1i 1329 . . . . . . . 8 (2 ∥ 4 ∨ 3 ∥ 4 ∨ 4 ∈ {1, 5})
3328, 29, 30, 32ppiublem1 25772 . . . . . . 7 (4 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (4...5) → (𝑃 mod 6) ∈ {1, 5})))
34 3nn0 11909 . . . . . . 7 3 ∈ ℕ0
35 df-4 11696 . . . . . . 7 4 = (3 + 1)
36 3z 12009 . . . . . . . . 9 3 ∈ ℤ
37 iddvds 15617 . . . . . . . . 9 (3 ∈ ℤ → 3 ∥ 3)
3836, 37ax-mp 5 . . . . . . . 8 3 ∥ 3
39383mix2i 1330 . . . . . . 7 (2 ∥ 3 ∨ 3 ∥ 3 ∨ 3 ∈ {1, 5})
4033, 34, 35, 39ppiublem1 25772 . . . . . 6 (3 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (3...5) → (𝑃 mod 6) ∈ {1, 5})))
41 2nn0 11908 . . . . . 6 2 ∈ ℕ0
42 df-3 11695 . . . . . 6 3 = (2 + 1)
43 z2even 15714 . . . . . . 7 2 ∥ 2
44433mix1i 1329 . . . . . 6 (2 ∥ 2 ∨ 3 ∥ 2 ∨ 2 ∈ {1, 5})
4540, 41, 42, 44ppiublem1 25772 . . . . 5 (2 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (2...5) → (𝑃 mod 6) ∈ {1, 5})))
46 1nn0 11907 . . . . 5 1 ∈ ℕ0
47 df-2 11694 . . . . 5 2 = (1 + 1)
48 1ex 10631 . . . . . . 7 1 ∈ V
4948prid1 4691 . . . . . 6 1 ∈ {1, 5}
50493mix3i 1331 . . . . 5 (2 ∥ 1 ∨ 3 ∥ 1 ∨ 1 ∈ {1, 5})
5145, 46, 47, 50ppiublem1 25772 . . . 4 (1 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (1...5) → (𝑃 mod 6) ∈ {1, 5})))
52 0nn0 11906 . . . 4 0 ∈ ℕ0
53 1e0p1 12134 . . . 4 1 = (0 + 1)
54 z0even 15710 . . . . 5 2 ∥ 0
55543mix1i 1329 . . . 4 (2 ∥ 0 ∨ 3 ∥ 0 ∨ 0 ∈ {1, 5})
5651, 52, 53, 55ppiublem1 25772 . . 3 (0 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (0...5) → (𝑃 mod 6) ∈ {1, 5})))
5756simpri 488 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (0...5) → (𝑃 mod 6) ∈ {1, 5}))
588, 57mpd 15 1 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (𝑃 mod 6) ∈ {1, 5})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  c0 4290  {cpr 4562   class class class wbr 5058  (class class class)co 7150  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  3c3 11687  4c4 11688  5c5 11689  6c6 11690  cz 11975  ...cfz 12886   mod cmo 13231  cdvds 15601  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-prm 16010
This theorem is referenced by:  ppiub  25774
  Copyright terms: Public domain W3C validator