Proof of Theorem ppiublem2
| Step | Hyp | Ref
| Expression |
| 1 | | prmz 16712 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 𝑃 ∈ ℤ) |
| 3 | | 6nn 12355 |
. . . 4
⊢ 6 ∈
ℕ |
| 4 | | zmodfz 13933 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 6 ∈
ℕ) → (𝑃 mod 6)
∈ (0...(6 − 1))) |
| 5 | 2, 3, 4 | sylancl 586 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (𝑃 mod 6) ∈ (0...(6 −
1))) |
| 6 | | 6m1e5 12397 |
. . . 4
⊢ (6
− 1) = 5 |
| 7 | 6 | oveq2i 7442 |
. . 3
⊢ (0...(6
− 1)) = (0...5) |
| 8 | 5, 7 | eleqtrdi 2851 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (𝑃 mod 6) ∈
(0...5)) |
| 9 | | 6re 12356 |
. . . . . . . . . . 11
⊢ 6 ∈
ℝ |
| 10 | 9 | leidi 11797 |
. . . . . . . . . 10
⊢ 6 ≤
6 |
| 11 | | noel 4338 |
. . . . . . . . . . . . 13
⊢ ¬
(𝑃 mod 6) ∈
∅ |
| 12 | 11 | pm2.21i 119 |
. . . . . . . . . . . 12
⊢ ((𝑃 mod 6) ∈ ∅ →
(𝑃 mod 6) ∈ {1,
5}) |
| 13 | | 5lt6 12447 |
. . . . . . . . . . . . 13
⊢ 5 <
6 |
| 14 | 3 | nnzi 12641 |
. . . . . . . . . . . . . 14
⊢ 6 ∈
ℤ |
| 15 | | 5nn 12352 |
. . . . . . . . . . . . . . 15
⊢ 5 ∈
ℕ |
| 16 | 15 | nnzi 12641 |
. . . . . . . . . . . . . 14
⊢ 5 ∈
ℤ |
| 17 | | fzn 13580 |
. . . . . . . . . . . . . 14
⊢ ((6
∈ ℤ ∧ 5 ∈ ℤ) → (5 < 6 ↔ (6...5) =
∅)) |
| 18 | 14, 16, 17 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (5 < 6
↔ (6...5) = ∅) |
| 19 | 13, 18 | mpbi 230 |
. . . . . . . . . . . 12
⊢ (6...5) =
∅ |
| 20 | 12, 19 | eleq2s 2859 |
. . . . . . . . . . 11
⊢ ((𝑃 mod 6) ∈ (6...5) →
(𝑃 mod 6) ∈ {1,
5}) |
| 21 | 20 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (6...5) →
(𝑃 mod 6) ∈ {1,
5})) |
| 22 | 10, 21 | pm3.2i 470 |
. . . . . . . . 9
⊢ (6 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (6...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 23 | | 5nn0 12546 |
. . . . . . . . 9
⊢ 5 ∈
ℕ0 |
| 24 | | df-6 12333 |
. . . . . . . . 9
⊢ 6 = (5 +
1) |
| 25 | 15 | elexi 3503 |
. . . . . . . . . . 11
⊢ 5 ∈
V |
| 26 | 25 | prid2 4763 |
. . . . . . . . . 10
⊢ 5 ∈
{1, 5} |
| 27 | 26 | 3mix3i 1336 |
. . . . . . . . 9
⊢ (2
∥ 5 ∨ 3 ∥ 5 ∨ 5 ∈ {1, 5}) |
| 28 | 22, 23, 24, 27 | ppiublem1 27246 |
. . . . . . . 8
⊢ (5 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (5...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 29 | | 4nn0 12545 |
. . . . . . . 8
⊢ 4 ∈
ℕ0 |
| 30 | | df-5 12332 |
. . . . . . . 8
⊢ 5 = (4 +
1) |
| 31 | | z4even 16409 |
. . . . . . . . 9
⊢ 2 ∥
4 |
| 32 | 31 | 3mix1i 1334 |
. . . . . . . 8
⊢ (2
∥ 4 ∨ 3 ∥ 4 ∨ 4 ∈ {1, 5}) |
| 33 | 28, 29, 30, 32 | ppiublem1 27246 |
. . . . . . 7
⊢ (4 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (4...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 34 | | 3nn0 12544 |
. . . . . . 7
⊢ 3 ∈
ℕ0 |
| 35 | | df-4 12331 |
. . . . . . 7
⊢ 4 = (3 +
1) |
| 36 | | 3z 12650 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
| 37 | | iddvds 16307 |
. . . . . . . . 9
⊢ (3 ∈
ℤ → 3 ∥ 3) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
⊢ 3 ∥
3 |
| 39 | 38 | 3mix2i 1335 |
. . . . . . 7
⊢ (2
∥ 3 ∨ 3 ∥ 3 ∨ 3 ∈ {1, 5}) |
| 40 | 33, 34, 35, 39 | ppiublem1 27246 |
. . . . . 6
⊢ (3 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (3...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 41 | | 2nn0 12543 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 42 | | df-3 12330 |
. . . . . 6
⊢ 3 = (2 +
1) |
| 43 | | z2even 16407 |
. . . . . . 7
⊢ 2 ∥
2 |
| 44 | 43 | 3mix1i 1334 |
. . . . . 6
⊢ (2
∥ 2 ∨ 3 ∥ 2 ∨ 2 ∈ {1, 5}) |
| 45 | 40, 41, 42, 44 | ppiublem1 27246 |
. . . . 5
⊢ (2 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (2...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 46 | | 1nn0 12542 |
. . . . 5
⊢ 1 ∈
ℕ0 |
| 47 | | df-2 12329 |
. . . . 5
⊢ 2 = (1 +
1) |
| 48 | | 1ex 11257 |
. . . . . . 7
⊢ 1 ∈
V |
| 49 | 48 | prid1 4762 |
. . . . . 6
⊢ 1 ∈
{1, 5} |
| 50 | 49 | 3mix3i 1336 |
. . . . 5
⊢ (2
∥ 1 ∨ 3 ∥ 1 ∨ 1 ∈ {1, 5}) |
| 51 | 45, 46, 47, 50 | ppiublem1 27246 |
. . . 4
⊢ (1 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (1...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 52 | | 0nn0 12541 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 53 | | 1e0p1 12775 |
. . . 4
⊢ 1 = (0 +
1) |
| 54 | | z0even 16404 |
. . . . 5
⊢ 2 ∥
0 |
| 55 | 54 | 3mix1i 1334 |
. . . 4
⊢ (2
∥ 0 ∨ 3 ∥ 0 ∨ 0 ∈ {1, 5}) |
| 56 | 51, 52, 53, 55 | ppiublem1 27246 |
. . 3
⊢ (0 ≤ 6
∧ ((𝑃 ∈ ℙ
∧ 4 ≤ 𝑃) →
((𝑃 mod 6) ∈ (0...5)
→ (𝑃 mod 6) ∈ {1,
5}))) |
| 57 | 56 | simpri 485 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (0...5) →
(𝑃 mod 6) ∈ {1,
5})) |
| 58 | 8, 57 | mpd 15 |
1
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (𝑃 mod 6) ∈ {1,
5}) |