MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid1g Structured version   Visualization version   GIF version

Theorem tpid1g 4702
Description: Closed theorem form of tpid1 4701. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid1g (𝐴𝐵𝐴 ∈ {𝐴, 𝐶, 𝐷})

Proof of Theorem tpid1g
StepHypRef Expression
1 eqid 2738 . . 3 𝐴 = 𝐴
213mix1i 1331 . 2 (𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷)
3 eltpg 4618 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷)))
42, 3mpbiri 257 1 (𝐴𝐵𝐴 ∈ {𝐴, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084   = wceq 1539  wcel 2108  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  tpnzd  4713  cplgr3v  27705  cyc3co2  31309  limsupequzlem  43153
  Copyright terms: Public domain W3C validator