MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid1g Structured version   Visualization version   GIF version

Theorem tpid1g 4751
Description: Closed theorem form of tpid1 4750. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid1g (𝐴𝐵𝐴 ∈ {𝐴, 𝐶, 𝐷})

Proof of Theorem tpid1g
StepHypRef Expression
1 eqid 2734 . . 3 𝐴 = 𝐴
213mix1i 1333 . 2 (𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷)
3 eltpg 4668 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴𝐴 = 𝐶𝐴 = 𝐷)))
42, 3mpbiri 258 1 (𝐴𝐵𝐴 ∈ {𝐴, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1539  wcel 2107  {ctp 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-un 3938  df-sn 4609  df-pr 4611  df-tp 4613
This theorem is referenced by:  tpnzd  4762  tpf  14521  cplgr3v  29399  cyc3co2  33106  limsupequzlem  45682
  Copyright terms: Public domain W3C validator