Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid1g | Structured version Visualization version GIF version |
Description: Closed theorem form of tpid1 4701. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
tpid1g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1331 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) |
3 | eltpg 4618 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 df-tp 4563 |
This theorem is referenced by: tpnzd 4713 cplgr3v 27705 cyc3co2 31309 limsupequzlem 43153 |
Copyright terms: Public domain | W3C validator |