Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid1g | Structured version Visualization version GIF version |
Description: Closed theorem form of tpid1 4664. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
tpid1g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix1i 1330 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) |
3 | eltpg 4583 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐴, 𝐶, 𝐷} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
4 | 2, 3 | mpbiri 261 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐴, 𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1083 = wceq 1538 ∈ wcel 2111 {ctp 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-sn 4526 df-pr 4528 df-tp 4530 |
This theorem is referenced by: tpnzd 4676 cplgr3v 27329 cyc3co2 30937 limsupequzlem 42758 |
Copyright terms: Public domain | W3C validator |