MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Structured version   Visualization version   GIF version

Theorem 3mix3 1333
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 218 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix3i  1336  3mix3d  1339  3jaobOLD  1429  tppreqb  4765  tpres  7157  onzsl  7802  sornom  10206  fpwwe2lem12  10571  nn0le2is012  12574  nn01to3  12876  qbtwnxr  13136  hash1to3  14433  swrdnd0  14598  pfxnd  14628  cshwshashlem1  17042  ostth  27583  nolesgn2o  27616  sltsolem1  27620  nosep2o  27627  btwncolinear1  36050  tpid3gVD  44824  limcicciooub  45628  dfxlim2v  45838
  Copyright terms: Public domain W3C validator