![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1329 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: 3mix3i 1334 3mix3d 1337 3jaobOLD 1426 tppreqb 4809 tpres 7220 onzsl 7866 sornom 10314 fpwwe2lem12 10679 nn0le2is012 12679 nn01to3 12980 qbtwnxr 13238 hash1to3 14527 swrdnd0 14691 pfxnd 14721 cshwshashlem1 17129 ostth 27697 nolesgn2o 27730 sltsolem1 27734 nosep2o 27741 btwncolinear1 36050 tpid3gVD 44839 limcicciooub 45592 dfxlim2v 45802 |
Copyright terms: Public domain | W3C validator |