Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1330 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
2 | 3orrot 1092 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 df-3or 1088 |
This theorem is referenced by: 3mix3i 1335 3mix3d 1338 3jaob 1426 tppreqb 4756 tpres 7136 onzsl 7764 sornom 10138 fpwwe2lem12 10503 nn0le2is012 12489 nn01to3 12786 qbtwnxr 13039 hash1to3 14309 swrdnd0 14468 pfxnd 14498 cshwshashlem1 16894 ostth 26892 nolesgn2o 26924 sltsolem1 26928 nosep2o 26935 btwncolinear1 34508 tpid3gVD 42835 limcicciooub 43566 dfxlim2v 43776 |
Copyright terms: Public domain | W3C validator |