| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix3i 1336 3mix3d 1339 3jaobOLD 1429 tppreqb 4765 tpres 7157 onzsl 7802 sornom 10206 fpwwe2lem12 10571 nn0le2is012 12574 nn01to3 12876 qbtwnxr 13136 hash1to3 14433 swrdnd0 14598 pfxnd 14628 cshwshashlem1 17042 ostth 27583 nolesgn2o 27616 sltsolem1 27620 nosep2o 27627 btwncolinear1 36050 tpid3gVD 44824 limcicciooub 45628 dfxlim2v 45838 |
| Copyright terms: Public domain | W3C validator |