MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Structured version   Visualization version   GIF version

Theorem 3mix3 1333
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 218 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix3i  1336  3mix3d  1339  3jaobOLD  1429  tppreqb  4769  tpres  7175  onzsl  7822  sornom  10230  fpwwe2lem12  10595  nn0le2is012  12598  nn01to3  12900  qbtwnxr  13160  hash1to3  14457  swrdnd0  14622  pfxnd  14652  cshwshashlem1  17066  ostth  27550  nolesgn2o  27583  sltsolem1  27587  nosep2o  27594  btwncolinear1  36057  tpid3gVD  44831  limcicciooub  45635  dfxlim2v  45845
  Copyright terms: Public domain W3C validator