Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1328 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
2 | 3orrot 1090 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: 3mix3i 1333 3mix3d 1336 3jaob 1424 tppreqb 4735 tpres 7058 onzsl 7668 sornom 9964 fpwwe2lem12 10329 nn0le2is012 12314 nn01to3 12610 qbtwnxr 12863 hash1to3 14133 swrdnd0 14298 pfxnd 14328 cshwshashlem1 16725 ostth 26692 nolesgn2o 33801 sltsolem1 33805 nosep2o 33812 btwncolinear1 34298 tpid3gVD 42351 limcicciooub 43068 dfxlim2v 43278 |
Copyright terms: Public domain | W3C validator |