| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix3i 1336 3mix3d 1339 3jaobOLD 1429 tppreqb 4781 tpres 7193 onzsl 7841 sornom 10291 fpwwe2lem12 10656 nn0le2is012 12657 nn01to3 12957 qbtwnxr 13216 hash1to3 14510 swrdnd0 14675 pfxnd 14705 cshwshashlem1 17115 ostth 27602 nolesgn2o 27635 sltsolem1 27639 nosep2o 27646 btwncolinear1 36087 tpid3gVD 44866 limcicciooub 45666 dfxlim2v 45876 |
| Copyright terms: Public domain | W3C validator |