| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix3i 1336 3mix3d 1339 3jaobOLD 1429 tppreqb 4754 tpres 7135 onzsl 7776 sornom 10168 fpwwe2lem12 10533 nn0le2is012 12537 nn01to3 12839 qbtwnxr 13099 hash1to3 14399 swrdnd0 14565 pfxnd 14595 cshwshashlem1 17007 ostth 27577 nolesgn2o 27610 sltsolem1 27614 nosep2o 27621 btwncolinear1 36113 tpid3gVD 44944 limcicciooub 45745 dfxlim2v 45955 |
| Copyright terms: Public domain | W3C validator |