MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Structured version   Visualization version   GIF version

Theorem 3mix3 1333
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 218 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix3i  1336  3mix3d  1339  3jaobOLD  1429  tppreqb  4754  tpres  7135  onzsl  7776  sornom  10168  fpwwe2lem12  10533  nn0le2is012  12537  nn01to3  12839  qbtwnxr  13099  hash1to3  14399  swrdnd0  14565  pfxnd  14595  cshwshashlem1  17007  ostth  27577  nolesgn2o  27610  sltsolem1  27614  nosep2o  27621  btwncolinear1  36113  tpid3gVD  44944  limcicciooub  45745  dfxlim2v  45955
  Copyright terms: Public domain W3C validator