| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix3i 1336 3mix3d 1339 3jaobOLD 1429 tppreqb 4756 tpres 7137 onzsl 7779 sornom 10171 fpwwe2lem12 10536 nn0le2is012 12540 nn01to3 12842 qbtwnxr 13102 hash1to3 14399 swrdnd0 14564 pfxnd 14594 cshwshashlem1 17007 ostth 27548 nolesgn2o 27581 sltsolem1 27585 nosep2o 27592 btwncolinear1 36047 tpid3gVD 44819 limcicciooub 45622 dfxlim2v 45832 |
| Copyright terms: Public domain | W3C validator |