| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix3i 1336 3mix3d 1339 3jaobOLD 1429 tppreqb 4772 tpres 7178 onzsl 7825 sornom 10237 fpwwe2lem12 10602 nn0le2is012 12605 nn01to3 12907 qbtwnxr 13167 hash1to3 14464 swrdnd0 14629 pfxnd 14659 cshwshashlem1 17073 ostth 27557 nolesgn2o 27590 sltsolem1 27594 nosep2o 27601 btwncolinear1 36064 tpid3gVD 44838 limcicciooub 45642 dfxlim2v 45852 |
| Copyright terms: Public domain | W3C validator |