MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Structured version   Visualization version   GIF version

Theorem 3mix3 1333
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 218 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix3i  1336  3mix3d  1339  3jaobOLD  1429  tppreqb  4772  tpres  7178  onzsl  7825  sornom  10237  fpwwe2lem12  10602  nn0le2is012  12605  nn01to3  12907  qbtwnxr  13167  hash1to3  14464  swrdnd0  14629  pfxnd  14659  cshwshashlem1  17073  ostth  27557  nolesgn2o  27590  sltsolem1  27594  nosep2o  27601  btwncolinear1  36064  tpid3gVD  44838  limcicciooub  45642  dfxlim2v  45852
  Copyright terms: Public domain W3C validator