![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1330 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
2 | 3orrot 1092 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: 3mix3i 1335 3mix3d 1338 3jaobOLD 1427 tppreqb 4830 tpres 7238 onzsl 7883 sornom 10346 fpwwe2lem12 10711 nn0le2is012 12707 nn01to3 13006 qbtwnxr 13262 hash1to3 14541 swrdnd0 14705 pfxnd 14735 cshwshashlem1 17143 ostth 27701 nolesgn2o 27734 sltsolem1 27738 nosep2o 27745 btwncolinear1 36033 tpid3gVD 44813 limcicciooub 45558 dfxlim2v 45768 |
Copyright terms: Public domain | W3C validator |