MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Structured version   Visualization version   GIF version

Theorem 3mix3 1331
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1329 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 218 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix3i  1334  3mix3d  1337  3jaobOLD  1426  tppreqb  4809  tpres  7220  onzsl  7866  sornom  10314  fpwwe2lem12  10679  nn0le2is012  12679  nn01to3  12980  qbtwnxr  13238  hash1to3  14527  swrdnd0  14691  pfxnd  14721  cshwshashlem1  17129  ostth  27697  nolesgn2o  27730  sltsolem1  27734  nosep2o  27741  btwncolinear1  36050  tpid3gVD  44839  limcicciooub  45592  dfxlim2v  45802
  Copyright terms: Public domain W3C validator