MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Structured version   Visualization version   GIF version

Theorem 3mix3 1333
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 1091 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 218 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix3i  1336  3mix3d  1339  3jaobOLD  1429  tppreqb  4781  tpres  7193  onzsl  7841  sornom  10291  fpwwe2lem12  10656  nn0le2is012  12657  nn01to3  12957  qbtwnxr  13216  hash1to3  14510  swrdnd0  14675  pfxnd  14705  cshwshashlem1  17115  ostth  27602  nolesgn2o  27635  sltsolem1  27639  nosep2o  27646  btwncolinear1  36087  tpid3gVD  44866  limcicciooub  45666  dfxlim2v  45876
  Copyright terms: Public domain W3C validator