Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix3 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1329 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) | |
2 | 3orrot 1091 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: 3mix3i 1334 3mix3d 1337 3jaob 1425 tppreqb 4738 tpres 7076 onzsl 7693 sornom 10033 fpwwe2lem12 10398 nn0le2is012 12384 nn01to3 12681 qbtwnxr 12934 hash1to3 14205 swrdnd0 14370 pfxnd 14400 cshwshashlem1 16797 ostth 26787 nolesgn2o 33874 sltsolem1 33878 nosep2o 33885 btwncolinear1 34371 tpid3gVD 42462 limcicciooub 43178 dfxlim2v 43388 |
Copyright terms: Public domain | W3C validator |