Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0z | Structured version Visualization version GIF version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z | ⊢ 0 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10986 | . 2 ⊢ 0 ∈ ℝ | |
2 | eqid 2739 | . . 3 ⊢ 0 = 0 | |
3 | 2 | 3mix1i 1332 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
4 | elz 12330 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
5 | 1, 3, 4 | mpbir2an 708 | 1 ⊢ 0 ∈ ℤ |
Copyright terms: Public domain | W3C validator |