| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0z | Structured version Visualization version GIF version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z | ⊢ 0 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11246 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | eqid 2734 | . . 3 ⊢ 0 = 0 | |
| 3 | 2 | 3mix1i 1333 | . 2 ⊢ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ) |
| 4 | elz 12599 | . 2 ⊢ (0 ∈ ℤ ↔ (0 ∈ ℝ ∧ (0 = 0 ∨ 0 ∈ ℕ ∨ -0 ∈ ℕ))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ 0 ∈ ℤ |
| Copyright terms: Public domain | W3C validator |