MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Structured version   Visualization version   GIF version

Theorem aalioulem2 26311
Description: Lemma for aaliou 26316. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
aalioulem2 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞
Allowed substitution hints:   𝑁(𝑥,𝑞,𝑝)

Proof of Theorem aalioulem2
Dummy variables 𝑟 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 13020 . . . . . . 7 1 ∈ ℝ+
2 snssi 4788 . . . . . . 7 (1 ∈ ℝ+ → {1} ⊆ ℝ+)
31, 2ax-mp 5 . . . . . 6 {1} ⊆ ℝ+
4 ssrab2 4060 . . . . . 6 {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ ℝ+
53, 4unssi 4171 . . . . 5 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ+
6 ltso 11323 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 snfi 9065 . . . . . . 7 {1} ∈ Fin
9 aalioulem2.b . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘ℤ))
10 aalioulem2.c . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1110nnne0d 12298 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
12 aalioulem2.a . . . . . . . . . . . . . 14 𝑁 = (deg‘𝐹)
1312eqcomi 2743 . . . . . . . . . . . . 13 (deg‘𝐹) = 𝑁
14 dgr0 26238 . . . . . . . . . . . . 13 (deg‘0𝑝) = 0
1511, 13, 143netr4g 3010 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ (deg‘0𝑝))
16 fveq2 6886 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
1716necon3i 2963 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ (deg‘0𝑝) → 𝐹 ≠ 0𝑝)
1815, 17syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
19 eqid 2734 . . . . . . . . . . . 12 (𝐹 “ {0}) = (𝐹 “ {0})
2019fta1 26286 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℤ) ∧ 𝐹 ≠ 0𝑝) → ((𝐹 “ {0}) ∈ Fin ∧ (♯‘(𝐹 “ {0})) ≤ (deg‘𝐹)))
219, 18, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐹 “ {0}) ∈ Fin ∧ (♯‘(𝐹 “ {0})) ≤ (deg‘𝐹)))
2221simpld 494 . . . . . . . . 9 (𝜑 → (𝐹 “ {0}) ∈ Fin)
23 abrexfi 9374 . . . . . . . . 9 ((𝐹 “ {0}) ∈ Fin → {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
2422, 23syl 17 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
25 rabssab 4065 . . . . . . . 8 {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}
26 ssfi 9195 . . . . . . . 8 (({𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) → {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
2724, 25, 26sylancl 586 . . . . . . 7 (𝜑 → {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
28 unfi 9193 . . . . . . 7 (({1} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin) → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin)
298, 27, 28sylancr 587 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin)
30 1ex 11239 . . . . . . . . 9 1 ∈ V
3130snid 4642 . . . . . . . 8 1 ∈ {1}
32 elun1 4162 . . . . . . . 8 (1 ∈ {1} → 1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
33 ne0i 4321 . . . . . . . 8 (1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅)
3431, 32, 33mp2b 10 . . . . . . 7 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅
3534a1i 11 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅)
36 rpssre 13024 . . . . . . . 8 + ⊆ ℝ
375, 36sstri 3973 . . . . . . 7 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ
3837a1i 11 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ)
39 fiinfcl 9523 . . . . . 6 (( < Or ℝ ∧ (({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin ∧ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅ ∧ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
407, 29, 35, 38, 39syl13anc 1373 . . . . 5 (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
415, 40sselid 3961 . . . 4 (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ℝ+)
42 0re 11245 . . . . . . . . . . 11 0 ∈ ℝ
43 rpge0 13030 . . . . . . . . . . . 12 (𝑑 ∈ ℝ+ → 0 ≤ 𝑑)
4443rgen 3052 . . . . . . . . . . 11 𝑑 ∈ ℝ+ 0 ≤ 𝑑
45 breq1 5126 . . . . . . . . . . . . 13 (𝑐 = 0 → (𝑐𝑑 ↔ 0 ≤ 𝑑))
4645ralbidv 3165 . . . . . . . . . . . 12 (𝑐 = 0 → (∀𝑑 ∈ ℝ+ 𝑐𝑑 ↔ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑))
4746rspcev 3605 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑) → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑)
4842, 44, 47mp2an 692 . . . . . . . . . 10 𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑
49 ssralv 4032 . . . . . . . . . . . 12 (({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ+ → (∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑))
505, 49ax-mp 5 . . . . . . . . . . 11 (∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑)
5150reximi 3073 . . . . . . . . . 10 (∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑)
5248, 51ax-mp 5 . . . . . . . . 9 𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑
53 eqeq1 2738 . . . . . . . . . . . 12 (𝑎 = (abs‘(𝐴𝑟)) → (𝑎 = (abs‘(𝐴𝑏)) ↔ (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏))))
5453rexbidv 3166 . . . . . . . . . . 11 (𝑎 = (abs‘(𝐴𝑟)) → (∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏)) ↔ ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏))))
55 aalioulem2.d . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐴 ∈ ℝ)
57 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℝ)
5856, 57resubcld 11673 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ∈ ℝ)
5958recnd 11271 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ∈ ℂ)
6055ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝐴 ∈ ℝ)
6160recnd 11271 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝐴 ∈ ℂ)
62 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝑟 ∈ ℝ)
6362recnd 11271 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝑟 ∈ ℂ)
6461, 63subeq0ad 11612 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → ((𝐴𝑟) = 0 ↔ 𝐴 = 𝑟))
6564necon3abid 2967 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → ((𝐴𝑟) ≠ 0 ↔ ¬ 𝐴 = 𝑟))
6665biimprd 248 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (¬ 𝐴 = 𝑟 → (𝐴𝑟) ≠ 0))
6766impr 454 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ≠ 0)
6859, 67absrpcld 15469 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ ℝ+)
6957recnd 11271 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℂ)
70 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐹𝑟) = 0)
71 plyf 26173 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
729, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℂ⟶ℂ)
7372ffnd 6717 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐹 Fn ℂ)
75 fniniseg 7060 . . . . . . . . . . . . . 14 (𝐹 Fn ℂ → (𝑟 ∈ (𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹𝑟) = 0)))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝑟 ∈ (𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹𝑟) = 0)))
7769, 70, 76mpbir2and 713 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ (𝐹 “ {0}))
78 eqid 2734 . . . . . . . . . . . 12 (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑟))
79 oveq2 7421 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐴𝑏) = (𝐴𝑟))
8079fveq2d 6890 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝐴𝑏)) = (abs‘(𝐴𝑟)))
8180rspceeqv 3628 . . . . . . . . . . . 12 ((𝑟 ∈ (𝐹 “ {0}) ∧ (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑟))) → ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏)))
8277, 78, 81sylancl 586 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏)))
8354, 68, 82elrabd 3677 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})
84 elun2 4163 . . . . . . . . . 10 ((abs‘(𝐴𝑟)) ∈ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} → (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
86 infrelb 12235 . . . . . . . . 9 ((({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑 ∧ (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))
8737, 52, 85, 86mp3an12i 1466 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))
8887expr 456 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (¬ 𝐴 = 𝑟 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
8988orrd 863 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
9089ex 412 . . . . 5 ((𝜑𝑟 ∈ ℝ) → ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
9190ralrimiva 3133 . . . 4 (𝜑 → ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
92 breq1 5126 . . . . . . . 8 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (𝑥 ≤ (abs‘(𝐴𝑟)) ↔ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
9392orbi2d 915 . . . . . . 7 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → ((𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟))) ↔ (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
9493imbi2d 340 . . . . . 6 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))))
9594ralbidv 3165 . . . . 5 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))))
9695rspcev 3605 . . . 4 ((inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))))
9741, 91, 96syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))))
98 fveqeq2 6895 . . . . . . . 8 (𝑟 = (𝑝 / 𝑞) → ((𝐹𝑟) = 0 ↔ (𝐹‘(𝑝 / 𝑞)) = 0))
99 eqeq2 2746 . . . . . . . . 9 (𝑟 = (𝑝 / 𝑞) → (𝐴 = 𝑟𝐴 = (𝑝 / 𝑞)))
100 oveq2 7421 . . . . . . . . . . 11 (𝑟 = (𝑝 / 𝑞) → (𝐴𝑟) = (𝐴 − (𝑝 / 𝑞)))
101100fveq2d 6890 . . . . . . . . . 10 (𝑟 = (𝑝 / 𝑞) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝑝 / 𝑞))))
102101breq2d 5135 . . . . . . . . 9 (𝑟 = (𝑝 / 𝑞) → (𝑥 ≤ (abs‘(𝐴𝑟)) ↔ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
10399, 102orbi12d 918 . . . . . . . 8 (𝑟 = (𝑝 / 𝑞) → ((𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
10498, 103imbi12d 344 . . . . . . 7 (𝑟 = (𝑝 / 𝑞) → (((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
105104rspcv 3601 . . . . . 6 ((𝑝 / 𝑞) ∈ ℝ → (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
106 znq 12976 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
107 qre 12977 . . . . . . 7 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
108106, 107syl 17 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
109105, 108syl11 33 . . . . 5 (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
110109ralrimivv 3187 . . . 4 (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
111110reximi 3073 . . 3 (∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
11297, 111syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
113 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈ ℝ+)
114 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
11510nnnn0d 12570 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
116115ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
117114, 116nnexpcld 14266 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
118117nnrpd 13057 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
119113, 118rpdivcld 13076 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ∈ ℝ+)
120119rpred 13059 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
121120adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
122 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ+)
123122rpred 13059 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ)
12455ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
125108adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
126124, 125resubcld 11673 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
127126recnd 11271 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
128127abscld 15457 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
129128adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
130 rpre 13025 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
131130ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈ ℝ)
132113rpcnne0d 13068 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
133 divid 11935 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
134132, 133syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) = 1)
135117nnge1d 12296 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞𝑁))
136134, 135eqbrtrd 5145 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) ≤ (𝑞𝑁))
137131, 113, 118, 136lediv23d 13127 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ≤ 𝑥)
138137adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ 𝑥)
139 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
140121, 123, 129, 138, 139letrd 11400 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
141140ex 412 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
142141orim2d 968 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
143142imim2d 57 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
144143ralimdvva 3193 . . 3 ((𝜑𝑥 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
145144reximdva 3155 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
146112, 145mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  {cab 2712  wne 2931  wral 3050  wrex 3059  {crab 3419  cun 3929  wss 3931  c0 4313  {csn 4606   class class class wbr 5123   Or wor 5571  ccnv 5664  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  Fincfn 8967  infcinf 9463  cc 11135  cr 11136  0cc0 11137  1c1 11138   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  cn 12248  0cn0 12509  cz 12596  cq 12972  +crp 13016  cexp 14084  chash 14351  abscabs 15255  0𝑝c0p 25640  Polycply 26159  degcdgr 26162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-rlim 15507  df-sum 15705  df-0p 25641  df-ply 26163  df-idp 26164  df-coe 26165  df-dgr 26166  df-quot 26269
This theorem is referenced by:  aalioulem6  26315
  Copyright terms: Public domain W3C validator