MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Structured version   Visualization version   GIF version

Theorem aalioulem2 26288
Description: Lemma for aaliou 26293. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
aalioulem2 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞
Allowed substitution hints:   𝑁(𝑥,𝑞,𝑝)

Proof of Theorem aalioulem2
Dummy variables 𝑟 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12900 . . . . . . 7 1 ∈ ℝ+
2 snssi 4761 . . . . . . 7 (1 ∈ ℝ+ → {1} ⊆ ℝ+)
31, 2ax-mp 5 . . . . . 6 {1} ⊆ ℝ+
4 ssrab2 4029 . . . . . 6 {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ ℝ+
53, 4unssi 4140 . . . . 5 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ+
6 ltso 11204 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 snfi 8976 . . . . . . 7 {1} ∈ Fin
9 aalioulem2.b . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘ℤ))
10 aalioulem2.c . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1110nnne0d 12186 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
12 aalioulem2.a . . . . . . . . . . . . . 14 𝑁 = (deg‘𝐹)
1312eqcomi 2742 . . . . . . . . . . . . 13 (deg‘𝐹) = 𝑁
14 dgr0 26215 . . . . . . . . . . . . 13 (deg‘0𝑝) = 0
1511, 13, 143netr4g 3008 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ (deg‘0𝑝))
16 fveq2 6831 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
1716necon3i 2961 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ (deg‘0𝑝) → 𝐹 ≠ 0𝑝)
1815, 17syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
19 eqid 2733 . . . . . . . . . . . 12 (𝐹 “ {0}) = (𝐹 “ {0})
2019fta1 26263 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℤ) ∧ 𝐹 ≠ 0𝑝) → ((𝐹 “ {0}) ∈ Fin ∧ (♯‘(𝐹 “ {0})) ≤ (deg‘𝐹)))
219, 18, 20syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐹 “ {0}) ∈ Fin ∧ (♯‘(𝐹 “ {0})) ≤ (deg‘𝐹)))
2221simpld 494 . . . . . . . . 9 (𝜑 → (𝐹 “ {0}) ∈ Fin)
23 abrexfi 9247 . . . . . . . . 9 ((𝐹 “ {0}) ∈ Fin → {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
2422, 23syl 17 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
25 rabssab 4034 . . . . . . . 8 {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}
26 ssfi 9093 . . . . . . . 8 (({𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) → {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
2724, 25, 26sylancl 586 . . . . . . 7 (𝜑 → {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
28 unfi 9091 . . . . . . 7 (({1} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin) → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin)
298, 27, 28sylancr 587 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin)
30 1ex 11119 . . . . . . . . 9 1 ∈ V
3130snid 4616 . . . . . . . 8 1 ∈ {1}
32 elun1 4131 . . . . . . . 8 (1 ∈ {1} → 1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
33 ne0i 4290 . . . . . . . 8 (1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅)
3431, 32, 33mp2b 10 . . . . . . 7 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅
3534a1i 11 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅)
36 rpssre 12904 . . . . . . . 8 + ⊆ ℝ
375, 36sstri 3940 . . . . . . 7 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ
3837a1i 11 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ)
39 fiinfcl 9398 . . . . . 6 (( < Or ℝ ∧ (({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin ∧ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅ ∧ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
407, 29, 35, 38, 39syl13anc 1374 . . . . 5 (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
415, 40sselid 3928 . . . 4 (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ℝ+)
42 0re 11125 . . . . . . . . . . 11 0 ∈ ℝ
43 rpge0 12910 . . . . . . . . . . . 12 (𝑑 ∈ ℝ+ → 0 ≤ 𝑑)
4443rgen 3050 . . . . . . . . . . 11 𝑑 ∈ ℝ+ 0 ≤ 𝑑
45 breq1 5098 . . . . . . . . . . . . 13 (𝑐 = 0 → (𝑐𝑑 ↔ 0 ≤ 𝑑))
4645ralbidv 3156 . . . . . . . . . . . 12 (𝑐 = 0 → (∀𝑑 ∈ ℝ+ 𝑐𝑑 ↔ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑))
4746rspcev 3573 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑) → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑)
4842, 44, 47mp2an 692 . . . . . . . . . 10 𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑
49 ssralv 3999 . . . . . . . . . . . 12 (({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ+ → (∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑))
505, 49ax-mp 5 . . . . . . . . . . 11 (∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑)
5150reximi 3071 . . . . . . . . . 10 (∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑)
5248, 51ax-mp 5 . . . . . . . . 9 𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑
53 eqeq1 2737 . . . . . . . . . . . 12 (𝑎 = (abs‘(𝐴𝑟)) → (𝑎 = (abs‘(𝐴𝑏)) ↔ (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏))))
5453rexbidv 3157 . . . . . . . . . . 11 (𝑎 = (abs‘(𝐴𝑟)) → (∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏)) ↔ ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏))))
55 aalioulem2.d . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐴 ∈ ℝ)
57 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℝ)
5856, 57resubcld 11556 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ∈ ℝ)
5958recnd 11151 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ∈ ℂ)
6055ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝐴 ∈ ℝ)
6160recnd 11151 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝐴 ∈ ℂ)
62 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝑟 ∈ ℝ)
6362recnd 11151 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝑟 ∈ ℂ)
6461, 63subeq0ad 11493 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → ((𝐴𝑟) = 0 ↔ 𝐴 = 𝑟))
6564necon3abid 2965 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → ((𝐴𝑟) ≠ 0 ↔ ¬ 𝐴 = 𝑟))
6665biimprd 248 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (¬ 𝐴 = 𝑟 → (𝐴𝑟) ≠ 0))
6766impr 454 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ≠ 0)
6859, 67absrpcld 15365 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ ℝ+)
6957recnd 11151 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℂ)
70 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐹𝑟) = 0)
71 plyf 26150 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
729, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℂ⟶ℂ)
7372ffnd 6660 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn ℂ)
7473ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐹 Fn ℂ)
75 fniniseg 7002 . . . . . . . . . . . . . 14 (𝐹 Fn ℂ → (𝑟 ∈ (𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹𝑟) = 0)))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝑟 ∈ (𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹𝑟) = 0)))
7769, 70, 76mpbir2and 713 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ (𝐹 “ {0}))
78 eqid 2733 . . . . . . . . . . . 12 (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑟))
79 oveq2 7363 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐴𝑏) = (𝐴𝑟))
8079fveq2d 6835 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝐴𝑏)) = (abs‘(𝐴𝑟)))
8180rspceeqv 3596 . . . . . . . . . . . 12 ((𝑟 ∈ (𝐹 “ {0}) ∧ (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑟))) → ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏)))
8277, 78, 81sylancl 586 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏)))
8354, 68, 82elrabd 3645 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})
84 elun2 4132 . . . . . . . . . 10 ((abs‘(𝐴𝑟)) ∈ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} → (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
86 infrelb 12118 . . . . . . . . 9 ((({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑 ∧ (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))
8737, 52, 85, 86mp3an12i 1467 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))
8887expr 456 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (¬ 𝐴 = 𝑟 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
8988orrd 863 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
9089ex 412 . . . . 5 ((𝜑𝑟 ∈ ℝ) → ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
9190ralrimiva 3125 . . . 4 (𝜑 → ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
92 breq1 5098 . . . . . . . 8 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (𝑥 ≤ (abs‘(𝐴𝑟)) ↔ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
9392orbi2d 915 . . . . . . 7 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → ((𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟))) ↔ (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
9493imbi2d 340 . . . . . 6 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))))
9594ralbidv 3156 . . . . 5 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))))
9695rspcev 3573 . . . 4 ((inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))))
9741, 91, 96syl2anc 584 . . 3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))))
98 fveqeq2 6840 . . . . . . . 8 (𝑟 = (𝑝 / 𝑞) → ((𝐹𝑟) = 0 ↔ (𝐹‘(𝑝 / 𝑞)) = 0))
99 eqeq2 2745 . . . . . . . . 9 (𝑟 = (𝑝 / 𝑞) → (𝐴 = 𝑟𝐴 = (𝑝 / 𝑞)))
100 oveq2 7363 . . . . . . . . . . 11 (𝑟 = (𝑝 / 𝑞) → (𝐴𝑟) = (𝐴 − (𝑝 / 𝑞)))
101100fveq2d 6835 . . . . . . . . . 10 (𝑟 = (𝑝 / 𝑞) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝑝 / 𝑞))))
102101breq2d 5107 . . . . . . . . 9 (𝑟 = (𝑝 / 𝑞) → (𝑥 ≤ (abs‘(𝐴𝑟)) ↔ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
10399, 102orbi12d 918 . . . . . . . 8 (𝑟 = (𝑝 / 𝑞) → ((𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
10498, 103imbi12d 344 . . . . . . 7 (𝑟 = (𝑝 / 𝑞) → (((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
105104rspcv 3569 . . . . . 6 ((𝑝 / 𝑞) ∈ ℝ → (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
106 znq 12856 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
107 qre 12857 . . . . . . 7 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
108106, 107syl 17 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
109105, 108syl11 33 . . . . 5 (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
110109ralrimivv 3174 . . . 4 (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
111110reximi 3071 . . 3 (∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
11297, 111syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
113 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈ ℝ+)
114 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
11510nnnn0d 12453 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
116115ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
117114, 116nnexpcld 14159 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
118117nnrpd 12938 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
119113, 118rpdivcld 12957 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ∈ ℝ+)
120119rpred 12940 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
121120adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
122 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ+)
123122rpred 12940 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ)
12455ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
125108adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
126124, 125resubcld 11556 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
127126recnd 11151 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
128127abscld 15353 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
129128adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
130 rpre 12905 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
131130ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈ ℝ)
132113rpcnne0d 12949 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
133 divid 11818 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
134132, 133syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) = 1)
135117nnge1d 12184 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞𝑁))
136134, 135eqbrtrd 5117 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) ≤ (𝑞𝑁))
137131, 113, 118, 136lediv23d 13008 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ≤ 𝑥)
138137adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ 𝑥)
139 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
140121, 123, 129, 138, 139letrd 11281 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
141140ex 412 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
142141orim2d 968 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
143142imim2d 57 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
144143ralimdvva 3180 . . 3 ((𝜑𝑥 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
145144reximdva 3146 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
146112, 145mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  cun 3896  wss 3898  c0 4282  {csn 4577   class class class wbr 5095   Or wor 5528  ccnv 5620  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  infcinf 9336  cc 11015  cr 11016  0cc0 11017  1c1 11018   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  0cn0 12392  cz 12479  cq 12852  +crp 12896  cexp 13975  chash 14244  abscabs 15148  0𝑝c0p 25617  Polycply 26136  degcdgr 26139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-0p 25618  df-ply 26140  df-idp 26141  df-coe 26142  df-dgr 26143  df-quot 26246
This theorem is referenced by:  aalioulem6  26292
  Copyright terms: Public domain W3C validator