MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Structured version   Visualization version   GIF version

Theorem aalioulem2 26096
Description: Lemma for aaliou 26101. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
aalioulem2 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞
Allowed substitution hints:   𝑁(𝑥,𝑞,𝑝)

Proof of Theorem aalioulem2
Dummy variables 𝑟 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12985 . . . . . . 7 1 ∈ ℝ+
2 snssi 4811 . . . . . . 7 (1 ∈ ℝ+ → {1} ⊆ ℝ+)
31, 2ax-mp 5 . . . . . 6 {1} ⊆ ℝ+
4 ssrab2 4077 . . . . . 6 {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ ℝ+
53, 4unssi 4185 . . . . 5 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ+
6 ltso 11301 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 snfi 9050 . . . . . . 7 {1} ∈ Fin
9 aalioulem2.b . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘ℤ))
10 aalioulem2.c . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1110nnne0d 12269 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
12 aalioulem2.a . . . . . . . . . . . . . 14 𝑁 = (deg‘𝐹)
1312eqcomi 2740 . . . . . . . . . . . . 13 (deg‘𝐹) = 𝑁
14 dgr0 26026 . . . . . . . . . . . . 13 (deg‘0𝑝) = 0
1511, 13, 143netr4g 3019 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐹) ≠ (deg‘0𝑝))
16 fveq2 6891 . . . . . . . . . . . . 13 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
1716necon3i 2972 . . . . . . . . . . . 12 ((deg‘𝐹) ≠ (deg‘0𝑝) → 𝐹 ≠ 0𝑝)
1815, 17syl 17 . . . . . . . . . . 11 (𝜑𝐹 ≠ 0𝑝)
19 eqid 2731 . . . . . . . . . . . 12 (𝐹 “ {0}) = (𝐹 “ {0})
2019fta1 26071 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℤ) ∧ 𝐹 ≠ 0𝑝) → ((𝐹 “ {0}) ∈ Fin ∧ (♯‘(𝐹 “ {0})) ≤ (deg‘𝐹)))
219, 18, 20syl2anc 583 . . . . . . . . . 10 (𝜑 → ((𝐹 “ {0}) ∈ Fin ∧ (♯‘(𝐹 “ {0})) ≤ (deg‘𝐹)))
2221simpld 494 . . . . . . . . 9 (𝜑 → (𝐹 “ {0}) ∈ Fin)
23 abrexfi 9358 . . . . . . . . 9 ((𝐹 “ {0}) ∈ Fin → {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
2422, 23syl 17 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
25 rabssab 4083 . . . . . . . 8 {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}
26 ssfi 9179 . . . . . . . 8 (({𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) → {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
2724, 25, 26sylancl 585 . . . . . . 7 (𝜑 → {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin)
28 unfi 9178 . . . . . . 7 (({1} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} ∈ Fin) → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin)
298, 27, 28sylancr 586 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin)
30 1ex 11217 . . . . . . . . 9 1 ∈ V
3130snid 4664 . . . . . . . 8 1 ∈ {1}
32 elun1 4176 . . . . . . . 8 (1 ∈ {1} → 1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
33 ne0i 4334 . . . . . . . 8 (1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅)
3431, 32, 33mp2b 10 . . . . . . 7 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅
3534a1i 11 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅)
36 rpssre 12988 . . . . . . . 8 + ⊆ ℝ
375, 36sstri 3991 . . . . . . 7 ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ
3837a1i 11 . . . . . 6 (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ)
39 fiinfcl 9502 . . . . . 6 (( < Or ℝ ∧ (({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ∈ Fin ∧ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ≠ ∅ ∧ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
407, 29, 35, 38, 39syl13anc 1371 . . . . 5 (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
415, 40sselid 3980 . . . 4 (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ℝ+)
42 0re 11223 . . . . . . . . . . 11 0 ∈ ℝ
43 rpge0 12994 . . . . . . . . . . . 12 (𝑑 ∈ ℝ+ → 0 ≤ 𝑑)
4443rgen 3062 . . . . . . . . . . 11 𝑑 ∈ ℝ+ 0 ≤ 𝑑
45 breq1 5151 . . . . . . . . . . . . 13 (𝑐 = 0 → (𝑐𝑑 ↔ 0 ≤ 𝑑))
4645ralbidv 3176 . . . . . . . . . . . 12 (𝑐 = 0 → (∀𝑑 ∈ ℝ+ 𝑐𝑑 ↔ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑))
4746rspcev 3612 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑) → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑)
4842, 44, 47mp2an 689 . . . . . . . . . 10 𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑
49 ssralv 4050 . . . . . . . . . . . 12 (({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ+ → (∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑))
505, 49ax-mp 5 . . . . . . . . . . 11 (∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑)
5150reximi 3083 . . . . . . . . . 10 (∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+ 𝑐𝑑 → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑)
5248, 51ax-mp 5 . . . . . . . . 9 𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑
53 eqeq1 2735 . . . . . . . . . . . 12 (𝑎 = (abs‘(𝐴𝑟)) → (𝑎 = (abs‘(𝐴𝑏)) ↔ (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏))))
5453rexbidv 3177 . . . . . . . . . . 11 (𝑎 = (abs‘(𝐴𝑟)) → (∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏)) ↔ ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏))))
55 aalioulem2.d . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
5655ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐴 ∈ ℝ)
57 simplr 766 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℝ)
5856, 57resubcld 11649 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ∈ ℝ)
5958recnd 11249 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ∈ ℂ)
6055ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝐴 ∈ ℝ)
6160recnd 11249 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝐴 ∈ ℂ)
62 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝑟 ∈ ℝ)
6362recnd 11249 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → 𝑟 ∈ ℂ)
6461, 63subeq0ad 11588 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → ((𝐴𝑟) = 0 ↔ 𝐴 = 𝑟))
6564necon3abid 2976 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → ((𝐴𝑟) ≠ 0 ↔ ¬ 𝐴 = 𝑟))
6665biimprd 247 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (¬ 𝐴 = 𝑟 → (𝐴𝑟) ≠ 0))
6766impr 454 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴𝑟) ≠ 0)
6859, 67absrpcld 15402 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ ℝ+)
6957recnd 11249 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℂ)
70 simprl 768 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐹𝑟) = 0)
71 plyf 25961 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
729, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℂ⟶ℂ)
7372ffnd 6718 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn ℂ)
7473ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐹 Fn ℂ)
75 fniniseg 7061 . . . . . . . . . . . . . 14 (𝐹 Fn ℂ → (𝑟 ∈ (𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹𝑟) = 0)))
7674, 75syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝑟 ∈ (𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹𝑟) = 0)))
7769, 70, 76mpbir2and 710 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ (𝐹 “ {0}))
78 eqid 2731 . . . . . . . . . . . 12 (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑟))
79 oveq2 7420 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐴𝑏) = (𝐴𝑟))
8079fveq2d 6895 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝐴𝑏)) = (abs‘(𝐴𝑟)))
8180rspceeqv 3633 . . . . . . . . . . . 12 ((𝑟 ∈ (𝐹 “ {0}) ∧ (abs‘(𝐴𝑟)) = (abs‘(𝐴𝑟))) → ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏)))
8277, 78, 81sylancl 585 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → ∃𝑏 ∈ (𝐹 “ {0})(abs‘(𝐴𝑟)) = (abs‘(𝐴𝑏)))
8354, 68, 82elrabd 3685 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})
84 elun2 4177 . . . . . . . . . 10 ((abs‘(𝐴𝑟)) ∈ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))} → (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
8583, 84syl 17 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}))
86 infrelb 12206 . . . . . . . . 9 ((({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}) ⊆ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})𝑐𝑑 ∧ (abs‘(𝐴𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))})) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))
8737, 52, 85, 86mp3an12i 1464 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ ((𝐹𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))
8887expr 456 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (¬ 𝐴 = 𝑟 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
8988orrd 860 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝐹𝑟) = 0) → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
9089ex 412 . . . . 5 ((𝜑𝑟 ∈ ℝ) → ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
9190ralrimiva 3145 . . . 4 (𝜑 → ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
92 breq1 5151 . . . . . . . 8 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (𝑥 ≤ (abs‘(𝐴𝑟)) ↔ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))
9392orbi2d 913 . . . . . . 7 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → ((𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟))) ↔ (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟)))))
9493imbi2d 340 . . . . . 6 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))))
9594ralbidv 3176 . . . . 5 (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) → (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))))
9695rspcev 3612 . . . 4 ((inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣ ∃𝑏 ∈ (𝐹 “ {0})𝑎 = (abs‘(𝐴𝑏))}), ℝ, < ) ≤ (abs‘(𝐴𝑟))))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))))
9741, 91, 96syl2anc 583 . . 3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))))
98 fveqeq2 6900 . . . . . . . 8 (𝑟 = (𝑝 / 𝑞) → ((𝐹𝑟) = 0 ↔ (𝐹‘(𝑝 / 𝑞)) = 0))
99 eqeq2 2743 . . . . . . . . 9 (𝑟 = (𝑝 / 𝑞) → (𝐴 = 𝑟𝐴 = (𝑝 / 𝑞)))
100 oveq2 7420 . . . . . . . . . . 11 (𝑟 = (𝑝 / 𝑞) → (𝐴𝑟) = (𝐴 − (𝑝 / 𝑞)))
101100fveq2d 6895 . . . . . . . . . 10 (𝑟 = (𝑝 / 𝑞) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝑝 / 𝑞))))
102101breq2d 5160 . . . . . . . . 9 (𝑟 = (𝑝 / 𝑞) → (𝑥 ≤ (abs‘(𝐴𝑟)) ↔ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
10399, 102orbi12d 916 . . . . . . . 8 (𝑟 = (𝑝 / 𝑞) → ((𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
10498, 103imbi12d 344 . . . . . . 7 (𝑟 = (𝑝 / 𝑞) → (((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) ↔ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
105104rspcv 3608 . . . . . 6 ((𝑝 / 𝑞) ∈ ℝ → (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
106 znq 12943 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
107 qre 12944 . . . . . . 7 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
108106, 107syl 17 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
109105, 108syl11 33 . . . . 5 (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
110109ralrimivv 3197 . . . 4 (∀𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
111110reximi 3083 . . 3 (∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((𝐹𝑟) = 0 → (𝐴 = 𝑟𝑥 ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
11297, 111syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
113 simplr 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈ ℝ+)
114 simprr 770 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
11510nnnn0d 12539 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
116115ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
117114, 116nnexpcld 14215 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
118117nnrpd 13021 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
119113, 118rpdivcld 13040 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ∈ ℝ+)
120119rpred 13023 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
121120adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
122 simpllr 773 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ+)
123122rpred 13023 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ)
12455ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
125108adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
126124, 125resubcld 11649 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
127126recnd 11249 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
128127abscld 15390 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
129128adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
130 rpre 12989 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
131130ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈ ℝ)
132113rpcnne0d 13032 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
133 divid 11908 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1)
134132, 133syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) = 1)
135117nnge1d 12267 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞𝑁))
136134, 135eqbrtrd 5170 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) ≤ (𝑞𝑁))
137131, 113, 118, 136lediv23d 13091 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞𝑁)) ≤ 𝑥)
138137adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ 𝑥)
139 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
140121, 123, 129, 138, 139letrd 11378 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
141140ex 412 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
142141orim2d 964 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
143142imim2d 57 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
144143ralimdvva 3203 . . 3 ((𝜑𝑥 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
145144reximdva 3167 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
146112, 145mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  {cab 2708  wne 2939  wral 3060  wrex 3069  {crab 3431  cun 3946  wss 3948  c0 4322  {csn 4628   class class class wbr 5148   Or wor 5587  ccnv 5675  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  Fincfn 8945  infcinf 9442  cc 11114  cr 11115  0cc0 11116  1c1 11117   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  0cn0 12479  cz 12565  cq 12939  +crp 12981  cexp 14034  chash 14297  abscabs 15188  0𝑝c0p 25431  Polycply 25947  degcdgr 25950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-xnn0 12552  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-rlim 15440  df-sum 15640  df-0p 25432  df-ply 25951  df-idp 25952  df-coe 25953  df-dgr 25954  df-quot 26054
This theorem is referenced by:  aalioulem6  26100
  Copyright terms: Public domain W3C validator