Step | Hyp | Ref
| Expression |
1 | | 1rp 12743 |
. . . . . . 7
⊢ 1 ∈
ℝ+ |
2 | | snssi 4742 |
. . . . . . 7
⊢ (1 ∈
ℝ+ → {1} ⊆ ℝ+) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ {1}
⊆ ℝ+ |
4 | | ssrab2 4014 |
. . . . . 6
⊢ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ⊆
ℝ+ |
5 | 3, 4 | unssi 4120 |
. . . . 5
⊢ ({1}
∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ⊆
ℝ+ |
6 | | ltso 11064 |
. . . . . . 7
⊢ < Or
ℝ |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (𝜑 → < Or
ℝ) |
8 | | snfi 8843 |
. . . . . . 7
⊢ {1}
∈ Fin |
9 | | aalioulem2.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℤ)) |
10 | | aalioulem2.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) |
11 | 10 | nnne0d 12032 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ≠ 0) |
12 | | aalioulem2.a |
. . . . . . . . . . . . . 14
⊢ 𝑁 = (deg‘𝐹) |
13 | 12 | eqcomi 2748 |
. . . . . . . . . . . . 13
⊢
(deg‘𝐹) =
𝑁 |
14 | | dgr0 25432 |
. . . . . . . . . . . . 13
⊢
(deg‘0𝑝) = 0 |
15 | 11, 13, 14 | 3netr4g 3024 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐹) ≠
(deg‘0𝑝)) |
16 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
17 | 16 | necon3i 2977 |
. . . . . . . . . . . 12
⊢
((deg‘𝐹) ≠
(deg‘0𝑝) → 𝐹 ≠
0𝑝) |
18 | 15, 17 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ≠
0𝑝) |
19 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ {0}) = (◡𝐹 “ {0}) |
20 | 19 | fta1 25477 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℤ)
∧ 𝐹 ≠
0𝑝) → ((◡𝐹 “ {0}) ∈ Fin ∧
(♯‘(◡𝐹 “ {0})) ≤ (deg‘𝐹))) |
21 | 9, 18, 20 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((◡𝐹 “ {0}) ∈ Fin ∧
(♯‘(◡𝐹 “ {0})) ≤ (deg‘𝐹))) |
22 | 21 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ {0}) ∈ Fin) |
23 | | abrexfi 9128 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {0}) ∈ Fin → {𝑎 ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ∈ Fin) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → {𝑎 ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ∈ Fin) |
25 | | rabssab 4019 |
. . . . . . . 8
⊢ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} |
26 | | ssfi 8965 |
. . . . . . . 8
⊢ (({𝑎 ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ∈ Fin ∧ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ⊆ {𝑎 ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) → {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ∈ Fin) |
27 | 24, 25, 26 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ∈ Fin) |
28 | | unfi 8964 |
. . . . . . 7
⊢ (({1}
∈ Fin ∧ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} ∈ Fin) → ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ∈ Fin) |
29 | 8, 27, 28 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ∈ Fin) |
30 | | 1ex 10980 |
. . . . . . . . 9
⊢ 1 ∈
V |
31 | 30 | snid 4598 |
. . . . . . . 8
⊢ 1 ∈
{1} |
32 | | elun1 4111 |
. . . . . . . 8
⊢ (1 ∈
{1} → 1 ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})) |
33 | | ne0i 4269 |
. . . . . . . 8
⊢ (1 ∈
({1} ∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) → ({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ≠ ∅) |
34 | 31, 32, 33 | mp2b 10 |
. . . . . . 7
⊢ ({1}
∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ≠ ∅ |
35 | 34 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ≠ ∅) |
36 | | rpssre 12746 |
. . . . . . . 8
⊢
ℝ+ ⊆ ℝ |
37 | 5, 36 | sstri 3931 |
. . . . . . 7
⊢ ({1}
∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ⊆ ℝ |
38 | 37 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ⊆ ℝ) |
39 | | fiinfcl 9269 |
. . . . . 6
⊢ (( <
Or ℝ ∧ (({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ∈ Fin ∧ ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ≠ ∅ ∧ ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ⊆ ℝ)) → inf(({1} ∪
{𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ∈ ({1} ∪
{𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})) |
40 | 7, 29, 35, 38, 39 | syl13anc 1371 |
. . . . 5
⊢ (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ∈ ({1} ∪
{𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})) |
41 | 5, 40 | sselid 3920 |
. . . 4
⊢ (𝜑 → inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ∈
ℝ+) |
42 | | 0re 10986 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
43 | | rpge0 12752 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℝ+
→ 0 ≤ 𝑑) |
44 | 43 | rgen 3075 |
. . . . . . . . . . 11
⊢
∀𝑑 ∈
ℝ+ 0 ≤ 𝑑 |
45 | | breq1 5078 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 0 → (𝑐 ≤ 𝑑 ↔ 0 ≤ 𝑑)) |
46 | 45 | ralbidv 3113 |
. . . . . . . . . . . 12
⊢ (𝑐 = 0 → (∀𝑑 ∈ ℝ+
𝑐 ≤ 𝑑 ↔ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑)) |
47 | 46 | rspcev 3562 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ ∀𝑑 ∈ ℝ+ 0 ≤ 𝑑) → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ℝ+
𝑐 ≤ 𝑑) |
48 | 42, 44, 47 | mp2an 689 |
. . . . . . . . . 10
⊢
∃𝑐 ∈
ℝ ∀𝑑 ∈
ℝ+ 𝑐 ≤
𝑑 |
49 | | ssralv 3988 |
. . . . . . . . . . . 12
⊢ (({1}
∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ⊆ ℝ+ →
(∀𝑑 ∈
ℝ+ 𝑐 ≤
𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})𝑐 ≤ 𝑑)) |
50 | 5, 49 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∀𝑑 ∈
ℝ+ 𝑐 ≤
𝑑 → ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})𝑐 ≤ 𝑑) |
51 | 50 | reximi 3179 |
. . . . . . . . . 10
⊢
(∃𝑐 ∈
ℝ ∀𝑑 ∈
ℝ+ 𝑐 ≤
𝑑 → ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})𝑐 ≤ 𝑑) |
52 | 48, 51 | ax-mp 5 |
. . . . . . . . 9
⊢
∃𝑐 ∈
ℝ ∀𝑑 ∈
({1} ∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})𝑐 ≤ 𝑑 |
53 | | eqeq1 2743 |
. . . . . . . . . . . 12
⊢ (𝑎 = (abs‘(𝐴 − 𝑟)) → (𝑎 = (abs‘(𝐴 − 𝑏)) ↔ (abs‘(𝐴 − 𝑟)) = (abs‘(𝐴 − 𝑏)))) |
54 | 53 | rexbidv 3227 |
. . . . . . . . . . 11
⊢ (𝑎 = (abs‘(𝐴 − 𝑟)) → (∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏)) ↔ ∃𝑏 ∈ (◡𝐹 “ {0})(abs‘(𝐴 − 𝑟)) = (abs‘(𝐴 − 𝑏)))) |
55 | | aalioulem2.d |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) |
56 | 55 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐴 ∈ ℝ) |
57 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℝ) |
58 | 56, 57 | resubcld 11412 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴 − 𝑟) ∈ ℝ) |
59 | 58 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴 − 𝑟) ∈ ℂ) |
60 | 55 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → 𝐴 ∈ ℝ) |
61 | 60 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → 𝐴 ∈ ℂ) |
62 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → 𝑟 ∈ ℝ) |
63 | 62 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → 𝑟 ∈ ℂ) |
64 | 61, 63 | subeq0ad 11351 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → ((𝐴 − 𝑟) = 0 ↔ 𝐴 = 𝑟)) |
65 | 64 | necon3abid 2981 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → ((𝐴 − 𝑟) ≠ 0 ↔ ¬ 𝐴 = 𝑟)) |
66 | 65 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → (¬ 𝐴 = 𝑟 → (𝐴 − 𝑟) ≠ 0)) |
67 | 66 | impr 455 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐴 − 𝑟) ≠ 0) |
68 | 59, 67 | absrpcld 15169 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴 − 𝑟)) ∈
ℝ+) |
69 | 57 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ ℂ) |
70 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝐹‘𝑟) = 0) |
71 | | plyf 25368 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (Poly‘ℤ)
→ 𝐹:ℂ⟶ℂ) |
72 | 9, 71 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
73 | 72 | ffnd 6610 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn ℂ) |
74 | 73 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝐹 Fn ℂ) |
75 | | fniniseg 6946 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn ℂ → (𝑟 ∈ (◡𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹‘𝑟) = 0))) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (𝑟 ∈ (◡𝐹 “ {0}) ↔ (𝑟 ∈ ℂ ∧ (𝐹‘𝑟) = 0))) |
77 | 69, 70, 76 | mpbir2and 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → 𝑟 ∈ (◡𝐹 “ {0})) |
78 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(abs‘(𝐴
− 𝑟)) =
(abs‘(𝐴 − 𝑟)) |
79 | | oveq2 7292 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑟 → (𝐴 − 𝑏) = (𝐴 − 𝑟)) |
80 | 79 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑟 → (abs‘(𝐴 − 𝑏)) = (abs‘(𝐴 − 𝑟))) |
81 | 80 | rspceeqv 3576 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ (◡𝐹 “ {0}) ∧ (abs‘(𝐴 − 𝑟)) = (abs‘(𝐴 − 𝑟))) → ∃𝑏 ∈ (◡𝐹 “ {0})(abs‘(𝐴 − 𝑟)) = (abs‘(𝐴 − 𝑏))) |
82 | 77, 78, 81 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → ∃𝑏 ∈ (◡𝐹 “ {0})(abs‘(𝐴 − 𝑟)) = (abs‘(𝐴 − 𝑏))) |
83 | 54, 68, 82 | elrabd 3627 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴 − 𝑟)) ∈ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) |
84 | | elun2 4112 |
. . . . . . . . . 10
⊢
((abs‘(𝐴
− 𝑟)) ∈ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))} → (abs‘(𝐴 − 𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})) |
85 | 83, 84 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → (abs‘(𝐴 − 𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})) |
86 | | infrelb 11969 |
. . . . . . . . 9
⊢ ((({1}
∪ {𝑎 ∈
ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}) ⊆ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑑 ∈ ({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})𝑐 ≤ 𝑑 ∧ (abs‘(𝐴 − 𝑟)) ∈ ({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))})) → inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟))) |
87 | 37, 52, 85, 86 | mp3an12i 1464 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ ((𝐹‘𝑟) = 0 ∧ ¬ 𝐴 = 𝑟)) → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟))) |
88 | 87 | expr 457 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → (¬ 𝐴 = 𝑟 → inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟)))) |
89 | 88 | orrd 860 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ) ∧ (𝐹‘𝑟) = 0) → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟)))) |
90 | 89 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟))))) |
91 | 90 | ralrimiva 3104 |
. . . 4
⊢ (𝜑 → ∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟))))) |
92 | | breq1 5078 |
. . . . . . . 8
⊢ (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) → (𝑥 ≤ (abs‘(𝐴 − 𝑟)) ↔ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟)))) |
93 | 92 | orbi2d 913 |
. . . . . . 7
⊢ (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) → ((𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟))) ↔ (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟))))) |
94 | 93 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) → (((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) ↔ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟)))))) |
95 | 94 | ralbidv 3113 |
. . . . 5
⊢ (𝑥 = inf(({1} ∪ {𝑎 ∈ ℝ+
∣ ∃𝑏 ∈
(◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) → (∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) ↔ ∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟)))))) |
96 | 95 | rspcev 3562 |
. . . 4
⊢
((inf(({1} ∪ {𝑎
∈ ℝ+ ∣ ∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ∈
ℝ+ ∧ ∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ inf(({1} ∪ {𝑎 ∈ ℝ+ ∣
∃𝑏 ∈ (◡𝐹 “ {0})𝑎 = (abs‘(𝐴 − 𝑏))}), ℝ, < ) ≤ (abs‘(𝐴 − 𝑟))))) → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟))))) |
97 | 41, 91, 96 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟))))) |
98 | | fveqeq2 6792 |
. . . . . . . 8
⊢ (𝑟 = (𝑝 / 𝑞) → ((𝐹‘𝑟) = 0 ↔ (𝐹‘(𝑝 / 𝑞)) = 0)) |
99 | | eqeq2 2751 |
. . . . . . . . 9
⊢ (𝑟 = (𝑝 / 𝑞) → (𝐴 = 𝑟 ↔ 𝐴 = (𝑝 / 𝑞))) |
100 | | oveq2 7292 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑝 / 𝑞) → (𝐴 − 𝑟) = (𝐴 − (𝑝 / 𝑞))) |
101 | 100 | fveq2d 6787 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑝 / 𝑞) → (abs‘(𝐴 − 𝑟)) = (abs‘(𝐴 − (𝑝 / 𝑞)))) |
102 | 101 | breq2d 5087 |
. . . . . . . . 9
⊢ (𝑟 = (𝑝 / 𝑞) → (𝑥 ≤ (abs‘(𝐴 − 𝑟)) ↔ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
103 | 99, 102 | orbi12d 916 |
. . . . . . . 8
⊢ (𝑟 = (𝑝 / 𝑞) → ((𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
104 | 98, 103 | imbi12d 345 |
. . . . . . 7
⊢ (𝑟 = (𝑝 / 𝑞) → (((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) ↔ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
105 | 104 | rspcv 3558 |
. . . . . 6
⊢ ((𝑝 / 𝑞) ∈ ℝ → (∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
106 | | znq 12701 |
. . . . . . 7
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ) |
107 | | qre 12702 |
. . . . . . 7
⊢ ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ) |
108 | 106, 107 | syl 17 |
. . . . . 6
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ) |
109 | 105, 108 | syl11 33 |
. . . . 5
⊢
(∀𝑟 ∈
ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
110 | 109 | ralrimivv 3123 |
. . . 4
⊢
(∀𝑟 ∈
ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
111 | 110 | reximi 3179 |
. . 3
⊢
(∃𝑥 ∈
ℝ+ ∀𝑟 ∈ ℝ ((𝐹‘𝑟) = 0 → (𝐴 = 𝑟 ∨ 𝑥 ≤ (abs‘(𝐴 − 𝑟)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
112 | 97, 111 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
113 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈
ℝ+) |
114 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈
ℕ) |
115 | 10 | nnnn0d 12302 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
116 | 115 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈
ℕ0) |
117 | 114, 116 | nnexpcld 13969 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ∈ ℕ) |
118 | 117 | nnrpd 12779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ∈
ℝ+) |
119 | 113, 118 | rpdivcld 12798 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞↑𝑁)) ∈
ℝ+) |
120 | 119 | rpred 12781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞↑𝑁)) ∈ ℝ) |
121 | 120 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ∈ ℝ) |
122 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ+) |
123 | 122 | rpred 12781 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ∈ ℝ) |
124 | 55 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈
ℝ) |
125 | 108 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ) |
126 | 124, 125 | resubcld 11412 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) |
127 | 126 | recnd 11012 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ) |
128 | 127 | abscld 15157 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) →
(abs‘(𝐴 −
(𝑝 / 𝑞))) ∈ ℝ) |
129 | 128 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) |
130 | | rpre 12747 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
131 | 130 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑥 ∈
ℝ) |
132 | 113 | rpcnne0d 12790 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
133 | | divid 11671 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) = 1) |
135 | 117 | nnge1d 12030 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤
(𝑞↑𝑁)) |
136 | 134, 135 | eqbrtrd 5097 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / 𝑥) ≤ (𝑞↑𝑁)) |
137 | 131, 113,
118, 136 | lediv23d 12849 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 / (𝑞↑𝑁)) ≤ 𝑥) |
138 | 137 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ≤ 𝑥) |
139 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) |
140 | 121, 123,
129, 138, 139 | letrd 11141 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) |
141 | 140 | ex 413 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
142 | 141 | orim2d 964 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
143 | 142 | imim2d 57 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) →
(((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
144 | 143 | ralimdvva 3127 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
145 | 144 | reximdva 3204 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ 𝑥 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
146 | 112, 145 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |