| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem18 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41705. Baer p. 45, line 7: "Then y =/= 0..." (Contributed by NM, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
| mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
| mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
| mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
| mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
| mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
| mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
| Ref | Expression |
|---|---|
| mapdpglem18 | ⊢ (𝜑 → 𝐸 ≠ (0g‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdpglem.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | dvhlvec 41108 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 5 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 6 | 5 | lvecdrng 21028 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
| 8 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
| 9 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 10 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
| 11 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
| 12 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 13 | mapdpglem.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 14 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 15 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 16 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
| 17 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 18 | mapdpglem3.f | . . . . . 6 ⊢ 𝐹 = (Base‘𝐶) | |
| 19 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
| 20 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 21 | mapdpglem3.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 22 | mapdpglem3.r | . . . . . 6 ⊢ 𝑅 = (-g‘𝐶) | |
| 23 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 24 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 25 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
| 26 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 27 | mapdpglem4.jt | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 28 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
| 29 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
| 30 | mapdpglem4.t4 | . . . . . 6 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
| 31 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
| 32 | 1, 9, 2, 10, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27, 28, 8, 29, 30, 31 | mapdpglem11 41681 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
| 33 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 34 | 20, 28, 33 | drnginvrn0 20658 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ≠ 0 ) |
| 35 | 7, 8, 32, 34 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ≠ 0 ) |
| 36 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 37 | eqid 2729 | . . . . 5 ⊢ (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶)) | |
| 38 | 1, 2, 5, 28, 13, 36, 37, 3 | lcd0 41607 | . . . 4 ⊢ (𝜑 → (0g‘(Scalar‘𝐶)) = 0 ) |
| 39 | 35, 38 | neeqtrrd 2999 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) |
| 40 | mapdpglem12.yn | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑄) | |
| 41 | 1, 9, 2, 10, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27, 28, 8, 29, 30, 31, 40 | mapdpglem16 41686 | . . 3 ⊢ (𝜑 → 𝑧 ≠ (0g‘𝐶)) |
| 42 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
| 43 | eqid 2729 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 44 | 1, 13, 3 | lcdlvec 41590 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 45 | 20, 28, 33 | drnginvrcl 20657 | . . . . . 6 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 46 | 7, 8, 32, 45 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 47 | 1, 2, 5, 20, 13, 36, 42, 3 | lcdsbase 41599 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
| 48 | 46, 47 | eleqtrrd 2831 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
| 49 | eqid 2729 | . . . . . . 7 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 50 | eqid 2729 | . . . . . . 7 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 51 | 1, 2, 3 | dvhlmod 41109 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 52 | 10, 49, 12 | lspsncl 20899 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 53 | 51, 15, 52 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 54 | 1, 9, 2, 49, 13, 50, 3, 53 | mapdcl2 41655 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
| 55 | 18, 50 | lssss 20858 | . . . . . 6 ⊢ ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
| 56 | 54, 55 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
| 57 | 56, 29 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐹) |
| 58 | 18, 21, 36, 42, 37, 43, 44, 48, 57 | lvecvsn0 21035 | . . 3 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · 𝑧) ≠ (0g‘𝐶) ↔ (((invr‘𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)) ∧ 𝑧 ≠ (0g‘𝐶)))) |
| 59 | 39, 41, 58 | mpbir2and 713 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑧) ≠ (0g‘𝐶)) |
| 60 | mapdpglem17.ep | . 2 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
| 61 | 59, 60, 43 | 3netr4g 3004 | 1 ⊢ (𝜑 → 𝐸 ≠ (0g‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 Scalarcsca 17183 ·𝑠 cvsca 17184 0gc0g 17362 -gcsg 18833 LSSumclsm 19532 invrcinvr 20291 DivRingcdr 20633 LModclmod 20782 LSubSpclss 20853 LSpanclspn 20893 LVecclvec 21025 HLchlt 39348 LHypclh 39983 DVecHcdvh 41077 LCDualclcd 41585 mapdcmpd 41623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38951 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-0g 17364 df-mre 17507 df-mrc 17508 df-acs 17510 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cntz 19215 df-oppg 19244 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-nzr 20417 df-rlreg 20598 df-domn 20599 df-drng 20635 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lvec 21026 df-lsatoms 38974 df-lshyp 38975 df-lcv 39017 df-lfl 39056 df-lkr 39084 df-ldual 39122 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 df-tgrp 40742 df-tendo 40754 df-edring 40756 df-dveca 41002 df-disoa 41028 df-dvech 41078 df-dib 41138 df-dic 41172 df-dih 41228 df-doch 41347 df-djh 41394 df-lcdual 41586 df-mapd 41624 |
| This theorem is referenced by: mapdpglem20 41690 |
| Copyright terms: Public domain | W3C validator |