Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem18 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 39343. Baer p. 45, line 7: "Then y =/= 0..." (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
Ref | Expression |
---|---|
mapdpglem18 | ⊢ (𝜑 → 𝐸 ≠ (0g‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdpglem.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlvec 38746 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
5 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
6 | 5 | lvecdrng 19996 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
8 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
9 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
10 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
11 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
12 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
13 | mapdpglem.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
14 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
15 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
16 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
17 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
18 | mapdpglem3.f | . . . . . 6 ⊢ 𝐹 = (Base‘𝐶) | |
19 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
20 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
21 | mapdpglem3.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝐶) | |
22 | mapdpglem3.r | . . . . . 6 ⊢ 𝑅 = (-g‘𝐶) | |
23 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
24 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
25 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
26 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
27 | mapdpglem4.jt | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
28 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
29 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
30 | mapdpglem4.t4 | . . . . . 6 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
31 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
32 | 1, 9, 2, 10, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27, 28, 8, 29, 30, 31 | mapdpglem11 39319 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
33 | eqid 2738 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
34 | 20, 28, 33 | drnginvrn0 19639 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ≠ 0 ) |
35 | 7, 8, 32, 34 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ≠ 0 ) |
36 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
37 | eqid 2738 | . . . . 5 ⊢ (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶)) | |
38 | 1, 2, 5, 28, 13, 36, 37, 3 | lcd0 39245 | . . . 4 ⊢ (𝜑 → (0g‘(Scalar‘𝐶)) = 0 ) |
39 | 35, 38 | neeqtrrd 3008 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) |
40 | mapdpglem12.yn | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑄) | |
41 | 1, 9, 2, 10, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27, 28, 8, 29, 30, 31, 40 | mapdpglem16 39324 | . . 3 ⊢ (𝜑 → 𝑧 ≠ (0g‘𝐶)) |
42 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
43 | eqid 2738 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
44 | 1, 13, 3 | lcdlvec 39228 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
45 | 20, 28, 33 | drnginvrcl 19638 | . . . . . 6 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
46 | 7, 8, 32, 45 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
47 | 1, 2, 5, 20, 13, 36, 42, 3 | lcdsbase 39237 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
48 | 46, 47 | eleqtrrd 2836 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
49 | eqid 2738 | . . . . . . 7 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
50 | eqid 2738 | . . . . . . 7 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
51 | 1, 2, 3 | dvhlmod 38747 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
52 | 10, 49, 12 | lspsncl 19868 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
53 | 51, 15, 52 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
54 | 1, 9, 2, 49, 13, 50, 3, 53 | mapdcl2 39293 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
55 | 18, 50 | lssss 19827 | . . . . . 6 ⊢ ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
56 | 54, 55 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
57 | 56, 29 | sseldd 3878 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐹) |
58 | 18, 21, 36, 42, 37, 43, 44, 48, 57 | lvecvsn0 20000 | . . 3 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · 𝑧) ≠ (0g‘𝐶) ↔ (((invr‘𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)) ∧ 𝑧 ≠ (0g‘𝐶)))) |
59 | 39, 41, 58 | mpbir2and 713 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑧) ≠ (0g‘𝐶)) |
60 | mapdpglem17.ep | . 2 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
61 | 59, 60, 43 | 3netr4g 3013 | 1 ⊢ (𝜑 → 𝐸 ≠ (0g‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ⊆ wss 3843 {csn 4516 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 Scalarcsca 16671 ·𝑠 cvsca 16672 0gc0g 16816 -gcsg 18221 LSSumclsm 18877 invrcinvr 19543 DivRingcdr 19621 LModclmod 19753 LSubSpclss 19822 LSpanclspn 19862 LVecclvec 19993 HLchlt 36987 LHypclh 37621 DVecHcdvh 38715 LCDualclcd 39223 mapdcmpd 39261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-riotaBAD 36590 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-tpos 7921 df-undef 7968 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-0g 16818 df-mre 16960 df-mrc 16961 df-acs 16963 df-proset 17654 df-poset 17672 df-plt 17684 df-lub 17700 df-glb 17701 df-join 17702 df-meet 17703 df-p0 17765 df-p1 17766 df-lat 17772 df-clat 17834 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-grp 18222 df-minusg 18223 df-sbg 18224 df-subg 18394 df-cntz 18565 df-oppg 18592 df-lsm 18879 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-oppr 19495 df-dvdsr 19513 df-unit 19514 df-invr 19544 df-dvr 19555 df-drng 19623 df-lmod 19755 df-lss 19823 df-lsp 19863 df-lvec 19994 df-lsatoms 36613 df-lshyp 36614 df-lcv 36656 df-lfl 36695 df-lkr 36723 df-ldual 36761 df-oposet 36813 df-ol 36815 df-oml 36816 df-covers 36903 df-ats 36904 df-atl 36935 df-cvlat 36959 df-hlat 36988 df-llines 37135 df-lplanes 37136 df-lvols 37137 df-lines 37138 df-psubsp 37140 df-pmap 37141 df-padd 37433 df-lhyp 37625 df-laut 37626 df-ldil 37741 df-ltrn 37742 df-trl 37796 df-tgrp 38380 df-tendo 38392 df-edring 38394 df-dveca 38640 df-disoa 38666 df-dvech 38716 df-dib 38776 df-dic 38810 df-dih 38866 df-doch 38985 df-djh 39032 df-lcdual 39224 df-mapd 39262 |
This theorem is referenced by: mapdpglem20 39328 |
Copyright terms: Public domain | W3C validator |