Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem18 Structured version   Visualization version   GIF version

Theorem mapdpglem18 41656
Description: Lemma for mapdpg 41673. Baer p. 45, line 7: "Then y =/= 0..." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem18 (𝜑𝐸 ≠ (0g𝐶))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem18
StepHypRef Expression
1 mapdpglem.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 mapdpglem.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdpglem.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 41076 . . . . . 6 (𝜑𝑈 ∈ LVec)
5 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
65lvecdrng 20988 . . . . . 6 (𝑈 ∈ LVec → 𝐴 ∈ DivRing)
74, 6syl 17 . . . . 5 (𝜑𝐴 ∈ DivRing)
8 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
9 mapdpglem.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
10 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
11 mapdpglem.s . . . . . 6 = (-g𝑈)
12 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
13 mapdpglem.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
15 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
16 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
17 mapdpglem2.j . . . . . 6 𝐽 = (LSpan‘𝐶)
18 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
19 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
20 mapdpglem3.b . . . . . 6 𝐵 = (Base‘𝐴)
21 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
22 mapdpglem3.r . . . . . 6 𝑅 = (-g𝐶)
23 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
24 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
25 mapdpglem4.q . . . . . 6 𝑄 = (0g𝑈)
26 mapdpglem.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
27 mapdpglem4.jt . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
28 mapdpglem4.z . . . . . 6 0 = (0g𝐴)
29 mapdpglem4.z4 . . . . . 6 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
30 mapdpglem4.t4 . . . . . 6 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
31 mapdpglem4.xn . . . . . 6 (𝜑𝑋𝑄)
321, 9, 2, 10, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27, 28, 8, 29, 30, 31mapdpglem11 41649 . . . . 5 (𝜑𝑔0 )
33 eqid 2729 . . . . . 6 (invr𝐴) = (invr𝐴)
3420, 28, 33drnginvrn0 20639 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ≠ 0 )
357, 8, 32, 34syl3anc 1373 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ≠ 0 )
36 eqid 2729 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
37 eqid 2729 . . . . 5 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
381, 2, 5, 28, 13, 36, 37, 3lcd0 41575 . . . 4 (𝜑 → (0g‘(Scalar‘𝐶)) = 0 )
3935, 38neeqtrrd 2999 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)))
40 mapdpglem12.yn . . . 4 (𝜑𝑌𝑄)
411, 9, 2, 10, 11, 12, 13, 3, 14, 15, 16, 17, 18, 19, 5, 20, 21, 22, 23, 24, 25, 26, 27, 28, 8, 29, 30, 31, 40mapdpglem16 41654 . . 3 (𝜑𝑧 ≠ (0g𝐶))
42 eqid 2729 . . . 4 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
43 eqid 2729 . . . 4 (0g𝐶) = (0g𝐶)
441, 13, 3lcdlvec 41558 . . . 4 (𝜑𝐶 ∈ LVec)
4520, 28, 33drnginvrcl 20638 . . . . . 6 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ∈ 𝐵)
467, 8, 32, 45syl3anc 1373 . . . . 5 (𝜑 → ((invr𝐴)‘𝑔) ∈ 𝐵)
471, 2, 5, 20, 13, 36, 42, 3lcdsbase 41567 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
4846, 47eleqtrrd 2831 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)))
49 eqid 2729 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
50 eqid 2729 . . . . . . 7 (LSubSp‘𝐶) = (LSubSp‘𝐶)
511, 2, 3dvhlmod 41077 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
5210, 49, 12lspsncl 20859 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
5351, 15, 52syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
541, 9, 2, 49, 13, 50, 3, 53mapdcl2 41623 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶))
5518, 50lssss 20818 . . . . . 6 ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹)
5654, 55syl 17 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹)
5756, 29sseldd 3944 . . . 4 (𝜑𝑧𝐹)
5818, 21, 36, 42, 37, 43, 44, 48, 57lvecvsn0 20995 . . 3 (𝜑 → ((((invr𝐴)‘𝑔) · 𝑧) ≠ (0g𝐶) ↔ (((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)) ∧ 𝑧 ≠ (0g𝐶))))
5939, 41, 58mpbir2and 713 . 2 (𝜑 → (((invr𝐴)‘𝑔) · 𝑧) ≠ (0g𝐶))
60 mapdpglem17.ep . 2 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
6159, 60, 433netr4g 3004 1 (𝜑𝐸 ≠ (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  -gcsg 18843  LSSumclsm 19540  invrcinvr 20272  DivRingcdr 20614  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853  LVecclvec 20985  HLchlt 39316  LHypclh 39951  DVecHcdvh 41045  LCDualclcd 41553  mapdcmpd 41591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lshyp 38943  df-lcv 38985  df-lfl 39024  df-lkr 39052  df-ldual 39090  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-tendo 40722  df-edring 40724  df-dveca 40970  df-disoa 40996  df-dvech 41046  df-dib 41106  df-dic 41140  df-dih 41196  df-doch 41315  df-djh 41362  df-lcdual 41554  df-mapd 41592
This theorem is referenced by:  mapdpglem20  41658
  Copyright terms: Public domain W3C validator