Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2x Structured version   Visualization version   GIF version

Theorem line2x 48785
Description: Example for a horizontal line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2x.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2x.y 𝑌 = {⟨1, 1⟩, ⟨2, 𝑀⟩}
Assertion
Ref Expression
line2x (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2x
StepHypRef Expression
1 line2.g . . . 4 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
21a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
3 1ex 11105 . . . . . . . . . . 11 1 ∈ V
4 2ex 12199 . . . . . . . . . . 11 2 ∈ V
53, 4pm3.2i 470 . . . . . . . . . 10 (1 ∈ V ∧ 2 ∈ V)
6 c0ex 11103 . . . . . . . . . . 11 0 ∈ V
76jctl 523 . . . . . . . . . 10 (𝑀 ∈ ℝ → (0 ∈ V ∧ 𝑀 ∈ ℝ))
8 1ne2 12325 . . . . . . . . . . 11 1 ≠ 2
98a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℝ → 1 ≠ 2)
10 fprg 7088 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{0, 𝑀})
11 0red 11112 . . . . . . . . . . . . . 14 ((1 ∈ V ∧ 2 ∈ V) → 0 ∈ ℝ)
12 simpr 484 . . . . . . . . . . . . . 14 ((0 ∈ V ∧ 𝑀 ∈ ℝ) → 𝑀 ∈ ℝ)
1311, 12anim12i 613 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ)) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ))
14133adant3 1132 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ))
15 prssi 4773 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → {0, 𝑀} ⊆ ℝ)
1614, 15syl 17 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {0, 𝑀} ⊆ ℝ)
1710, 16fssd 6668 . . . . . . . . . 10 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
185, 7, 9, 17mp3an2i 1468 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
19 line2.i . . . . . . . . . 10 𝐼 = {1, 2}
2019feq2i 6643 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
2118, 20sylibr 234 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
22 reex 11094 . . . . . . . . 9 ℝ ∈ V
23 prex 5375 . . . . . . . . . 10 {1, 2} ∈ V
2419, 23eqeltri 2827 . . . . . . . . 9 𝐼 ∈ V
2522, 24elmap 8795 . . . . . . . 8 ({⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
2621, 25sylibr 234 . . . . . . 7 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
27 line2x.x . . . . . . 7 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
28 line2.p . . . . . . 7 𝑃 = (ℝ ↑m 𝐼)
2926, 27, 283eltr4g 2848 . . . . . 6 (𝑀 ∈ ℝ → 𝑋𝑃)
303jctl 523 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (1 ∈ V ∧ 𝑀 ∈ ℝ))
31 fprg 7088 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (1 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 1⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{1, 𝑀})
325, 30, 9, 31mp3an2i 1468 . . . . . . . . . 10 (𝑀 ∈ ℝ → {⟨1, 1⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{1, 𝑀})
33 1re 11109 . . . . . . . . . . 11 1 ∈ ℝ
34 prssi 4773 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → {1, 𝑀} ⊆ ℝ)
3533, 34mpan 690 . . . . . . . . . 10 (𝑀 ∈ ℝ → {1, 𝑀} ⊆ ℝ)
3632, 35fssd 6668 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 1⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
3719feq2i 6643 . . . . . . . . 9 ({⟨1, 1⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 1⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
3836, 37sylibr 234 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 1⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
3922, 24pm3.2i 470 . . . . . . . . 9 (ℝ ∈ V ∧ 𝐼 ∈ V)
40 elmapg 8763 . . . . . . . . 9 ((ℝ ∈ V ∧ 𝐼 ∈ V) → ({⟨1, 1⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 1⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ))
4139, 40mp1i 13 . . . . . . . 8 (𝑀 ∈ ℝ → ({⟨1, 1⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 1⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ))
4238, 41mpbird 257 . . . . . . 7 (𝑀 ∈ ℝ → {⟨1, 1⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
43 line2x.y . . . . . . 7 𝑌 = {⟨1, 1⟩, ⟨2, 𝑀⟩}
4442, 43, 283eltr4g 2848 . . . . . 6 (𝑀 ∈ ℝ → 𝑌𝑃)
45 opex 5404 . . . . . . . . . 10 ⟨1, 0⟩ ∈ V
46 opex 5404 . . . . . . . . . 10 ⟨2, 𝑀⟩ ∈ V
4745, 46pm3.2i 470 . . . . . . . . 9 (⟨1, 0⟩ ∈ V ∧ ⟨2, 𝑀⟩ ∈ V)
48 opex 5404 . . . . . . . . . 10 ⟨1, 1⟩ ∈ V
4948, 46pm3.2i 470 . . . . . . . . 9 (⟨1, 1⟩ ∈ V ∧ ⟨2, 𝑀⟩ ∈ V)
5047, 49pm3.2i 470 . . . . . . . 8 ((⟨1, 0⟩ ∈ V ∧ ⟨2, 𝑀⟩ ∈ V) ∧ (⟨1, 1⟩ ∈ V ∧ ⟨2, 𝑀⟩ ∈ V))
518orci 865 . . . . . . . . . . . 12 (1 ≠ 2 ∨ 0 ≠ 𝑀)
523, 6opthne 5422 . . . . . . . . . . . 12 (⟨1, 0⟩ ≠ ⟨2, 𝑀⟩ ↔ (1 ≠ 2 ∨ 0 ≠ 𝑀))
5351, 52mpbir 231 . . . . . . . . . . 11 ⟨1, 0⟩ ≠ ⟨2, 𝑀
5453a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℝ → ⟨1, 0⟩ ≠ ⟨2, 𝑀⟩)
55 0ne1 12193 . . . . . . . . . . . 12 0 ≠ 1
5655olci 866 . . . . . . . . . . 11 (1 ≠ 1 ∨ 0 ≠ 1)
573, 6opthne 5422 . . . . . . . . . . 11 (⟨1, 0⟩ ≠ ⟨1, 1⟩ ↔ (1 ≠ 1 ∨ 0 ≠ 1))
5856, 57mpbir 231 . . . . . . . . . 10 ⟨1, 0⟩ ≠ ⟨1, 1⟩
5954, 58jctil 519 . . . . . . . . 9 (𝑀 ∈ ℝ → (⟨1, 0⟩ ≠ ⟨1, 1⟩ ∧ ⟨1, 0⟩ ≠ ⟨2, 𝑀⟩))
6059orcd 873 . . . . . . . 8 (𝑀 ∈ ℝ → ((⟨1, 0⟩ ≠ ⟨1, 1⟩ ∧ ⟨1, 0⟩ ≠ ⟨2, 𝑀⟩) ∨ (⟨2, 𝑀⟩ ≠ ⟨1, 1⟩ ∧ ⟨2, 𝑀⟩ ≠ ⟨2, 𝑀⟩)))
61 prneimg 4806 . . . . . . . 8 (((⟨1, 0⟩ ∈ V ∧ ⟨2, 𝑀⟩ ∈ V) ∧ (⟨1, 1⟩ ∈ V ∧ ⟨2, 𝑀⟩ ∈ V)) → (((⟨1, 0⟩ ≠ ⟨1, 1⟩ ∧ ⟨1, 0⟩ ≠ ⟨2, 𝑀⟩) ∨ (⟨2, 𝑀⟩ ≠ ⟨1, 1⟩ ∧ ⟨2, 𝑀⟩ ≠ ⟨2, 𝑀⟩)) → {⟨1, 0⟩, ⟨2, 𝑀⟩} ≠ {⟨1, 1⟩, ⟨2, 𝑀⟩}))
6250, 60, 61mpsyl 68 . . . . . . 7 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ≠ {⟨1, 1⟩, ⟨2, 𝑀⟩})
6362, 27, 433netr4g 3007 . . . . . 6 (𝑀 ∈ ℝ → 𝑋𝑌)
6429, 44, 633jca 1128 . . . . 5 (𝑀 ∈ ℝ → (𝑋𝑃𝑌𝑃𝑋𝑌))
6564adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝑋𝑃𝑌𝑃𝑋𝑌))
66 line2.e . . . . 5 𝐸 = (ℝ^‘𝐼)
67 line2.l . . . . 5 𝐿 = (LineM𝐸)
68 eqid 2731 . . . . 5 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
69 eqid 2731 . . . . 5 ((𝑌‘2) − (𝑋‘2)) = ((𝑌‘2) − (𝑋‘2))
70 eqid 2731 . . . . 5 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
7119, 66, 28, 67, 68, 69, 70rrx2linest 48773 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))})
7265, 71syl 17 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))})
732, 72eqeq12d 2747 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐺 = (𝑋𝐿𝑌) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))}))
74 rabbi 3425 . . 3 (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))})
7543fveq1i 6823 . . . . . . . . . . . . 13 (𝑌‘1) = ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘1)
763, 3, 83pm3.2i 1340 . . . . . . . . . . . . . 14 (1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2)
77 fvpr1g 7124 . . . . . . . . . . . . . 14 ((1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘1) = 1)
7876, 77mp1i 13 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘1) = 1)
7975, 78eqtrid 2778 . . . . . . . . . . . 12 (𝑀 ∈ ℝ → (𝑌‘1) = 1)
8027fveq1i 6823 . . . . . . . . . . . . 13 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1)
813, 6, 83pm3.2i 1340 . . . . . . . . . . . . . 14 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
82 fvpr1g 7124 . . . . . . . . . . . . . 14 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
8381, 82mp1i 13 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
8480, 83eqtrid 2778 . . . . . . . . . . . 12 (𝑀 ∈ ℝ → (𝑋‘1) = 0)
8579, 84oveq12d 7364 . . . . . . . . . . 11 (𝑀 ∈ ℝ → ((𝑌‘1) − (𝑋‘1)) = (1 − 0))
86 1m0e1 12238 . . . . . . . . . . 11 (1 − 0) = 1
8785, 86eqtrdi 2782 . . . . . . . . . 10 (𝑀 ∈ ℝ → ((𝑌‘1) − (𝑋‘1)) = 1)
8887oveq1d 7361 . . . . . . . . 9 (𝑀 ∈ ℝ → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (1 · (𝑝‘2)))
8943fveq1i 6823 . . . . . . . . . . . . . 14 (𝑌‘2) = ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘2)
90 fvpr2g 7125 . . . . . . . . . . . . . . 15 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
914, 8, 90mp3an13 1454 . . . . . . . . . . . . . 14 (𝑀 ∈ ℝ → ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
9289, 91eqtrid 2778 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (𝑌‘2) = 𝑀)
9327fveq1i 6823 . . . . . . . . . . . . . 14 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2)
94 fvpr2g 7125 . . . . . . . . . . . . . . 15 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
954, 8, 94mp3an13 1454 . . . . . . . . . . . . . 14 (𝑀 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
9693, 95eqtrid 2778 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (𝑋‘2) = 𝑀)
9792, 96oveq12d 7364 . . . . . . . . . . . 12 (𝑀 ∈ ℝ → ((𝑌‘2) − (𝑋‘2)) = (𝑀𝑀))
98 recn 11093 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → 𝑀 ∈ ℂ)
9998subidd 11457 . . . . . . . . . . . 12 (𝑀 ∈ ℝ → (𝑀𝑀) = 0)
10097, 99eqtrd 2766 . . . . . . . . . . 11 (𝑀 ∈ ℝ → ((𝑌‘2) − (𝑋‘2)) = 0)
101100oveq1d 7361 . . . . . . . . . 10 (𝑀 ∈ ℝ → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (0 · (𝑝‘1)))
1023, 3, 9, 77mp3an12i 1467 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → ({⟨1, 1⟩, ⟨2, 𝑀⟩}‘1) = 1)
10375, 102eqtrid 2778 . . . . . . . . . . . . . 14 (𝑀 ∈ ℝ → (𝑌‘1) = 1)
10496, 103oveq12d 7364 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → ((𝑋‘2) · (𝑌‘1)) = (𝑀 · 1))
105 ax-1rid 11073 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (𝑀 · 1) = 𝑀)
106104, 105eqtrd 2766 . . . . . . . . . . . 12 (𝑀 ∈ ℝ → ((𝑋‘2) · (𝑌‘1)) = 𝑀)
1073, 6, 9, 82mp3an12i 1467 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
10880, 107eqtrid 2778 . . . . . . . . . . . . . 14 (𝑀 ∈ ℝ → (𝑋‘1) = 0)
109108, 92oveq12d 7364 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → ((𝑋‘1) · (𝑌‘2)) = (0 · 𝑀))
11098mul02d 11308 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (0 · 𝑀) = 0)
111109, 110eqtrd 2766 . . . . . . . . . . . 12 (𝑀 ∈ ℝ → ((𝑋‘1) · (𝑌‘2)) = 0)
112106, 111oveq12d 7364 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (𝑀 − 0))
11398subid1d 11458 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 0) = 𝑀)
114112, 113eqtrd 2766 . . . . . . . . . 10 (𝑀 ∈ ℝ → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = 𝑀)
115101, 114oveq12d 7364 . . . . . . . . 9 (𝑀 ∈ ℝ → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) = ((0 · (𝑝‘1)) + 𝑀))
11688, 115eqeq12d 2747 . . . . . . . 8 (𝑀 ∈ ℝ → ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (1 · (𝑝‘2)) = ((0 · (𝑝‘1)) + 𝑀)))
117116adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (1 · (𝑝‘2)) = ((0 · (𝑝‘1)) + 𝑀)))
11819, 28rrx2pyel 48743 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
119118recnd 11137 . . . . . . . . 9 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
120119mullidd 11127 . . . . . . . 8 (𝑝𝑃 → (1 · (𝑝‘2)) = (𝑝‘2))
12119, 28rrx2pxel 48742 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
122121recnd 11137 . . . . . . . . . 10 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
123122mul02d 11308 . . . . . . . . 9 (𝑝𝑃 → (0 · (𝑝‘1)) = 0)
124123oveq1d 7361 . . . . . . . 8 (𝑝𝑃 → ((0 · (𝑝‘1)) + 𝑀) = (0 + 𝑀))
125120, 124eqeq12d 2747 . . . . . . 7 (𝑝𝑃 → ((1 · (𝑝‘2)) = ((0 · (𝑝‘1)) + 𝑀) ↔ (𝑝‘2) = (0 + 𝑀)))
126117, 125sylan9bb 509 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (𝑝‘2) = (0 + 𝑀)))
127126bibi2d 342 . . . . 5 ((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ 𝑝𝑃) → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (0 + 𝑀))))
128127ralbidva 3153 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (0 + 𝑀))))
12998addlidd 11311 . . . . . . . . 9 (𝑀 ∈ ℝ → (0 + 𝑀) = 𝑀)
130129adantr 480 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑝𝑃) → (0 + 𝑀) = 𝑀)
131130eqeq2d 2742 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑝𝑃) → ((𝑝‘2) = (0 + 𝑀) ↔ (𝑝‘2) = 𝑀))
132131bibi2d 342 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑝𝑃) → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (0 + 𝑀)) ↔ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
133132ralbidva 3153 . . . . 5 (𝑀 ∈ ℝ → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (0 + 𝑀)) ↔ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
134133adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = (0 + 𝑀)) ↔ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
13519, 66, 28, 67, 1, 27, 43line2xlem 48784 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
136 oveq1 7353 . . . . . . . . . . . . . . 15 (𝐴 = 0 → (𝐴 · (𝑝‘1)) = (0 · (𝑝‘1)))
137136adantr 480 . . . . . . . . . . . . . 14 ((𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) → (𝐴 · (𝑝‘1)) = (0 · (𝑝‘1)))
138137ad2antlr 727 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = (0 · (𝑝‘1)))
139123adantl 481 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (0 · (𝑝‘1)) = 0)
140138, 139eqtrd 2766 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) = 0)
141140oveq1d 7361 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = (0 + (𝐵 · (𝑝‘2))))
142 recn 11093 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
143142adantr 480 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
1441433ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
145144ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → 𝐵 ∈ ℂ)
146119adantl 481 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℂ)
147145, 146mulcld 11129 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (𝐵 · (𝑝‘2)) ∈ ℂ)
148147addlidd 11311 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (0 + (𝐵 · (𝑝‘2))) = (𝐵 · (𝑝‘2)))
149141, 148eqtrd 2766 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = (𝐵 · (𝑝‘2)))
150149eqeq1d 2733 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝐵 · (𝑝‘2)) = 𝐶))
151 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
152151recnd 11137 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
153152ad3antrrr 730 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → 𝐶 ∈ ℂ)
154 simpl 482 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
155154recnd 11137 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
1561553ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
157156ad3antrrr 730 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → 𝐵 ∈ ℂ)
158 simp2r 1201 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ≠ 0)
159158ad3antrrr 730 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → 𝐵 ≠ 0)
160153, 157, 146, 159divmuld 11916 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → ((𝐶 / 𝐵) = (𝑝‘2) ↔ (𝐵 · (𝑝‘2)) = 𝐶))
161 simpr 484 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) → 𝑀 = (𝐶 / 𝐵))
162161eqcomd 2737 . . . . . . . . . . 11 ((𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) → (𝐶 / 𝐵) = 𝑀)
163162ad2antlr 727 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (𝐶 / 𝐵) = 𝑀)
164163eqeq1d 2733 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → ((𝐶 / 𝐵) = (𝑝‘2) ↔ 𝑀 = (𝑝‘2)))
165150, 160, 1643bitr2d 307 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶𝑀 = (𝑝‘2)))
166 eqcom 2738 . . . . . . . 8 (𝑀 = (𝑝‘2) ↔ (𝑝‘2) = 𝑀)
167165, 166bitrdi 287 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
168167ralrimiva 3124 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) ∧ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
169168ex 412 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
170135, 169impbid 212 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
171128, 134, 1703bitrd 305 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
17274, 171bitr3id 285 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))} ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
17373, 172bitrd 279 1 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3902  {cpr 4578  cop 4582  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cmin 11341   / cdiv 11771  2c2 12177  ℝ^crrx 25308  LineMcline 48758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-0g 17342  df-prds 17348  df-pws 17350  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-ghm 19123  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-drng 20644  df-field 20645  df-staf 20752  df-srng 20753  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-cnfld 21290  df-refld 21540  df-dsmm 21667  df-frlm 21682  df-tng 24497  df-tcph 25094  df-rrx 25310  df-line 48760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator