| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oalem4.3 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
| Ref | Expression |
|---|---|
| 3oalem4 | ⊢ 𝑅 ⊆ (⊥‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oalem4.3 | . 2 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
| 2 | inss1 4184 | . 2 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⊆ (⊥‘𝐵) | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ 𝑅 ⊆ (⊥‘𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 ⊥cort 30910 ∨ℋ chj 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: 3oalem5 31646 |
| Copyright terms: Public domain | W3C validator |