Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > 3oalem4 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem4.3 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
Ref | Expression |
---|---|
3oalem4 | ⊢ 𝑅 ⊆ (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem4.3 | . 2 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
2 | inss1 4159 | . 2 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⊆ (⊥‘𝐵) | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ 𝑅 ⊆ (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ⊥cort 29193 ∨ℋ chj 29196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: 3oalem5 29929 |
Copyright terms: Public domain | W3C validator |