![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 3oalem4 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem4.3 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
Ref | Expression |
---|---|
3oalem4 | ⊢ 𝑅 ⊆ (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem4.3 | . 2 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
2 | inss1 4227 | . 2 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⊆ (⊥‘𝐵) | |
3 | 1, 2 | eqsstri 4015 | 1 ⊢ 𝑅 ⊆ (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3946 ⊆ wss 3947 ‘cfv 6542 (class class class)co 7411 ⊥cort 30450 ∨ℋ chj 30453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 df-ss 3964 |
This theorem is referenced by: 3oalem5 31186 |
Copyright terms: Public domain | W3C validator |