![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version |
Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30455). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 4017). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3982). For an
alternative definition, not requiring a dummy variable, see dfss2 3980.
Other possible definitions are given by dfss3 3983, dfss4 4274, sspss 4111,
ssequn1 4195, ssequn2 4198, sseqin2 4230, and ssdif0 4371.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11160 and 1ex 11254) or ℝ ( cf. df-r 11162 and reex 11243). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11243). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3980. (Revised by GG, 15-May-2025.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3962 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1535 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2105 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
9 | 8, 4 | wal 1534 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfss2 3980 dfss3 3983 dfss6 3984 dfssf 3985 ssel 3988 ssriv 3998 ssrdv 4000 sstr2 4001 sstr2OLD 4002 eqss 4010 nss 4059 ssralv 4063 ssrexv 4064 rabss2 4087 ssconb 4151 ssequn1 4195 unss 4199 ssin 4246 ssdif0 4371 difin0ss 4378 inssdif0 4379 reldisj 4458 ssundif 4493 sbcssg 4525 pwss 4627 snssb 4786 snssgOLD 4788 pwpw0 4817 ssuni 4936 unissb 4943 unissbOLD 4944 iunssf 5048 iunss 5049 dftr2 5266 axpweq 5356 axpow2 5372 ssextss 5463 ssrel 5794 ssrelOLD 5795 ssrel2 5797 ssrelrel 5808 reliun 5828 relop 5863 idrefALT 6133 funimass4 6972 dfom2 7888 inf2 9660 grothprim 10871 psslinpr 11068 ltaddpr 11071 isprm2 16715 vdwmc2 17012 acsmapd 18611 ismhp3 22163 dfconn2 23442 iskgen3 23572 metcld 25353 metcld2 25354 isch2 31251 pjnormssi 32196 ssiun3 32578 ssrelf 32634 bnj1361 34820 bnj978 34941 fineqvpow 35088 dffr5 35733 brsset 35870 sscoid 35894 ss-ax8 36207 relowlpssretop 37346 fvineqsneq 37394 unielss 43206 rp-fakeinunass 43504 rababg 43563 dfhe3 43764 snhesn 43775 dffrege76 43928 ntrneiiso 44080 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 expanduniss 44288 ismnuprim 44289 ismnushort 44296 onfrALTlem2 44543 trsspwALT 44815 trsspwALT2 44816 snssiALTVD 44824 snssiALT 44825 sstrALT2VD 44831 sstrALT2 44832 sbcssgVD 44880 onfrALTlem2VD 44886 sspwimp 44915 sspwimpVD 44916 sspwimpcf 44917 sspwimpcfVD 44918 sspwimpALT 44922 unisnALT 44923 ssclaxsep 44946 icccncfext 45842 |
Copyright terms: Public domain | W3C validator |