| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version | ||
| Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30418). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3954). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3919). For an
alternative definition, not requiring a dummy variable, see dfss2 3917.
Other possible definitions are given by dfss3 3920, dfss4 4220, sspss 4053,
ssequn1 4137, ssequn2 4140, sseqin2 4174, and ssdif0 4317.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11024 and 1ex 11118) or ℝ ( cf. df-r 11026 and reex 11107). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11107). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3917. (Revised by GG, 15-May-2025.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3899 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2113 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2113 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | wal 1539 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfss2 3917 dfss3 3920 dfss6 3921 dfssf 3922 ssel 3925 ssriv 3935 ssrdv 3937 sstr2 3938 sstr2OLD 3939 eqss 3947 nss 3996 ssralv 4000 ssrexv 4001 ralss 4006 rexss 4007 ss2abim 4010 rabss2OLD 4029 ssconb 4093 ssequn1 4137 unss 4141 ssin 4190 ssdif0 4317 difin0ss 4324 inssdif0 4325 reldisj 4404 ssundif 4439 sbcssg 4471 pwss 4574 snssb 4736 pwpw0 4766 ssuni 4885 unissb 4893 iunssf 4995 iunssfOLD 4996 iunss 4997 iunssOLD 4998 dftr2 5204 axpweq 5293 axpow2 5309 ssextss 5398 ssrel 5729 ssrel2 5731 ssrelrel 5742 reliunOLD 5763 relop 5797 idrefALT 6067 funimass4 6895 dfom2 7807 inf2 9523 grothprim 10735 psslinpr 10932 ltaddpr 10935 isprm2 16603 vdwmc2 16901 acsmapd 18470 ismhp3 22067 dfconn2 23344 iskgen3 23474 metcld 25243 metcld2 25244 isch2 31214 pjnormssi 32159 ssiun3 32549 ssrelf 32609 bnj1361 34851 bnj978 34972 r1omhfb 35134 r1omhfbregs 35144 fineqvpow 35149 dffr5 35809 brsset 35942 sscoid 35966 ss-ax8 36280 relowlpssretop 37419 fvineqsneq 37467 unielss 43325 rp-fakeinunass 43622 rababg 43681 dfhe3 43882 snhesn 43893 dffrege76 44046 ntrneiiso 44198 ntrneik2 44199 ntrneix2 44200 ntrneikb 44201 expanduniss 44400 ismnuprim 44401 ismnushort 44408 onfrALTlem2 44653 trsspwALT 44924 trsspwALT2 44925 snssiALTVD 44933 snssiALT 44934 sstrALT2VD 44940 sstrALT2 44941 sbcssgVD 44989 onfrALTlem2VD 44995 sspwimp 45024 sspwimpVD 45025 sspwimpcf 45026 sspwimpcfVD 45027 sspwimpALT 45031 unisnALT 45032 ssclaxsep 45089 permaxpow 45116 icccncfext 45999 |
| Copyright terms: Public domain | W3C validator |