| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version | ||
| Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30354). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3981). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3946). For an
alternative definition, not requiring a dummy variable, see dfss2 3944.
Other possible definitions are given by dfss3 3947, dfss4 4244, sspss 4077,
ssequn1 4161, ssequn2 4164, sseqin2 4198, and ssdif0 4341.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11135 and 1ex 11229) or ℝ ( cf. df-r 11137 and reex 11218). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11218). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3944. (Revised by GG, 15-May-2025.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3926 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | wal 1538 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfss2 3944 dfss3 3947 dfss6 3948 dfssf 3949 ssel 3952 ssriv 3962 ssrdv 3964 sstr2 3965 sstr2OLD 3966 eqss 3974 nss 4023 ssralv 4027 ssrexv 4028 ralss 4033 rexss 4034 rabss2 4053 ssconb 4117 ssequn1 4161 unss 4165 ssin 4214 ssdif0 4341 difin0ss 4348 inssdif0 4349 reldisj 4428 ssundif 4463 sbcssg 4495 pwss 4598 snssb 4758 snssgOLD 4760 pwpw0 4789 ssuni 4908 unissb 4915 unissbOLD 4916 iunssf 5020 iunss 5021 dftr2 5231 axpweq 5321 axpow2 5337 ssextss 5428 ssrel 5761 ssrelOLD 5762 ssrel2 5764 ssrelrel 5775 reliun 5795 relop 5830 idrefALT 6100 funimass4 6942 dfom2 7861 inf2 9635 grothprim 10846 psslinpr 11043 ltaddpr 11046 isprm2 16699 vdwmc2 16997 acsmapd 18562 ismhp3 22078 dfconn2 23355 iskgen3 23485 metcld 25256 metcld2 25257 isch2 31150 pjnormssi 32095 ssiun3 32485 ssrelf 32541 bnj1361 34805 bnj978 34926 fineqvpow 35073 dffr5 35717 brsset 35853 sscoid 35877 ss-ax8 36189 relowlpssretop 37328 fvineqsneq 37376 unielss 43189 rp-fakeinunass 43486 rababg 43545 dfhe3 43746 snhesn 43757 dffrege76 43910 ntrneiiso 44062 ntrneik2 44063 ntrneix2 44064 ntrneikb 44065 expanduniss 44265 ismnuprim 44266 ismnushort 44273 onfrALTlem2 44519 trsspwALT 44790 trsspwALT2 44791 snssiALTVD 44799 snssiALT 44800 sstrALT2VD 44806 sstrALT2 44807 sbcssgVD 44855 onfrALTlem2VD 44861 sspwimp 44890 sspwimpVD 44891 sspwimpcf 44892 sspwimpcfVD 44893 sspwimpALT 44897 unisnALT 44898 ssclaxsep 44955 permaxpow 44982 icccncfext 45864 |
| Copyright terms: Public domain | W3C validator |