| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version | ||
| Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30397). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3955). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3920). For an
alternative definition, not requiring a dummy variable, see dfss2 3918.
Other possible definitions are given by dfss3 3921, dfss4 4217, sspss 4050,
ssequn1 4134, ssequn2 4137, sseqin2 4171, and ssdif0 4314.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11006 and 1ex 11100) or ℝ ( cf. df-r 11008 and reex 11089). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11089). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3918. (Revised by GG, 15-May-2025.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3900 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1540 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2110 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2110 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | wal 1539 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfss2 3918 dfss3 3921 dfss6 3922 dfssf 3923 ssel 3926 ssriv 3936 ssrdv 3938 sstr2 3939 sstr2OLD 3940 eqss 3948 nss 3997 ssralv 4001 ssrexv 4002 ralss 4007 rexss 4008 rabss2 4026 ssconb 4090 ssequn1 4134 unss 4138 ssin 4187 ssdif0 4314 difin0ss 4321 inssdif0 4322 reldisj 4401 ssundif 4436 sbcssg 4468 pwss 4571 snssb 4733 pwpw0 4763 ssuni 4882 unissb 4889 iunssf 4991 iunss 4992 dftr2 5198 axpweq 5287 axpow2 5303 ssextss 5392 ssrel 5721 ssrel2 5723 ssrelrel 5734 reliun 5754 relop 5788 idrefALT 6057 funimass4 6881 dfom2 7793 inf2 9508 grothprim 10717 psslinpr 10914 ltaddpr 10917 isprm2 16585 vdwmc2 16883 acsmapd 18452 ismhp3 22050 dfconn2 23327 iskgen3 23457 metcld 25226 metcld2 25227 isch2 31193 pjnormssi 32138 ssiun3 32528 ssrelf 32588 bnj1361 34830 bnj978 34951 fineqvpow 35106 dffr5 35766 brsset 35902 sscoid 35926 ss-ax8 36238 relowlpssretop 37377 fvineqsneq 37425 unielss 43230 rp-fakeinunass 43527 rababg 43586 dfhe3 43787 snhesn 43798 dffrege76 43951 ntrneiiso 44103 ntrneik2 44104 ntrneix2 44105 ntrneikb 44106 expanduniss 44305 ismnuprim 44306 ismnushort 44313 onfrALTlem2 44558 trsspwALT 44829 trsspwALT2 44830 snssiALTVD 44838 snssiALT 44839 sstrALT2VD 44845 sstrALT2 44846 sbcssgVD 44894 onfrALTlem2VD 44900 sspwimp 44929 sspwimpVD 44930 sspwimpcf 44931 sspwimpcfVD 44932 sspwimpALT 44936 unisnALT 44937 ssclaxsep 44994 permaxpow 45021 icccncfext 45904 |
| Copyright terms: Public domain | W3C validator |