| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version | ||
| Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30389). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3960). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3925). For an
alternative definition, not requiring a dummy variable, see dfss2 3923.
Other possible definitions are given by dfss3 3926, dfss4 4222, sspss 4055,
ssequn1 4139, ssequn2 4142, sseqin2 4176, and ssdif0 4319.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11036 and 1ex 11130) or ℝ ( cf. df-r 11038 and reex 11119). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11119). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3923. (Revised by GG, 15-May-2025.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3905 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | wal 1538 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfss2 3923 dfss3 3926 dfss6 3927 dfssf 3928 ssel 3931 ssriv 3941 ssrdv 3943 sstr2 3944 sstr2OLD 3945 eqss 3953 nss 4002 ssralv 4006 ssrexv 4007 ralss 4012 rexss 4013 rabss2 4031 ssconb 4095 ssequn1 4139 unss 4143 ssin 4192 ssdif0 4319 difin0ss 4326 inssdif0 4327 reldisj 4406 ssundif 4441 sbcssg 4473 pwss 4576 snssb 4736 snssgOLD 4738 pwpw0 4767 ssuni 4886 unissb 4893 iunssf 4996 iunss 4997 dftr2 5204 axpweq 5293 axpow2 5309 ssextss 5400 ssrel 5730 ssrel2 5732 ssrelrel 5743 reliun 5763 relop 5797 idrefALT 6066 funimass4 6891 dfom2 7808 inf2 9538 grothprim 10747 psslinpr 10944 ltaddpr 10947 isprm2 16611 vdwmc2 16909 acsmapd 18478 ismhp3 22045 dfconn2 23322 iskgen3 23452 metcld 25222 metcld2 25223 isch2 31185 pjnormssi 32130 ssiun3 32520 ssrelf 32576 bnj1361 34794 bnj978 34915 fineqvpow 35070 dffr5 35726 brsset 35862 sscoid 35886 ss-ax8 36198 relowlpssretop 37337 fvineqsneq 37385 unielss 43191 rp-fakeinunass 43488 rababg 43547 dfhe3 43748 snhesn 43759 dffrege76 43912 ntrneiiso 44064 ntrneik2 44065 ntrneix2 44066 ntrneikb 44067 expanduniss 44266 ismnuprim 44267 ismnushort 44274 onfrALTlem2 44520 trsspwALT 44791 trsspwALT2 44792 snssiALTVD 44800 snssiALT 44801 sstrALT2VD 44807 sstrALT2 44808 sbcssgVD 44856 onfrALTlem2VD 44862 sspwimp 44891 sspwimpVD 44892 sspwimpcf 44893 sspwimpcfVD 44894 sspwimpALT 44898 unisnALT 44899 ssclaxsep 44956 permaxpow 44983 icccncfext 45869 |
| Copyright terms: Public domain | W3C validator |