![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version |
Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30459). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 4031). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3996). For an
alternative definition, not requiring a dummy variable, see dfss2 3994.
Other possible definitions are given by dfss3 3997, dfss4 4288, sspss 4125,
ssequn1 4209, ssequn2 4212, sseqin2 4244, and ssdif0 4389.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11192 and 1ex 11286) or ℝ ( cf. df-r 11194 and reex 11275). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11275). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3994. (Revised by GG, 15-May-2025.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3976 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1536 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 5, 2 | wcel 2108 | . . . 4 wff 𝑥 ∈ 𝐵 |
8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
9 | 8, 4 | wal 1535 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfss2 3994 dfss3 3997 dfss6 3998 dfssf 3999 ssel 4002 ssriv 4012 ssrdv 4014 sstr2 4015 sstr2OLD 4016 eqss 4024 nss 4073 ssralv 4077 ssrexv 4078 rabss2 4101 ssconb 4165 ssequn1 4209 unss 4213 ssin 4260 ssdif0 4389 difin0ss 4396 inssdif0 4397 reldisj 4476 ssundif 4511 sbcssg 4543 pwss 4645 snssb 4807 snssgOLD 4809 pwpw0 4838 ssuni 4956 unissb 4963 unissbOLD 4964 iunssf 5067 iunss 5068 dftr2 5285 axpweq 5369 axpow2 5385 ssextss 5473 ssrel 5806 ssrelOLD 5807 ssrel2 5809 ssrelrel 5820 reliun 5840 relop 5875 idrefALT 6143 funimass4 6986 dfom2 7905 inf2 9692 grothprim 10903 psslinpr 11100 ltaddpr 11103 isprm2 16729 vdwmc2 17026 acsmapd 18624 ismhp3 22169 dfconn2 23448 iskgen3 23578 metcld 25359 metcld2 25360 isch2 31255 pjnormssi 32200 ssiun3 32581 ssrelf 32637 bnj1361 34804 bnj978 34925 fineqvpow 35072 dffr5 35716 brsset 35853 sscoid 35877 ss-ax8 36191 relowlpssretop 37330 fvineqsneq 37378 unielss 43179 rp-fakeinunass 43477 rababg 43536 dfhe3 43737 snhesn 43748 dffrege76 43901 ntrneiiso 44053 ntrneik2 44054 ntrneix2 44055 ntrneikb 44056 expanduniss 44262 ismnuprim 44263 ismnushort 44270 onfrALTlem2 44517 trsspwALT 44789 trsspwALT2 44790 snssiALTVD 44798 snssiALT 44799 sstrALT2VD 44805 sstrALT2 44806 sbcssgVD 44854 onfrALTlem2VD 44860 sspwimp 44889 sspwimpVD 44890 sspwimpcf 44891 sspwimpcfVD 44892 sspwimpALT 44896 unisnALT 44897 icccncfext 45808 |
Copyright terms: Public domain | W3C validator |