| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version | ||
| Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30356). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3969). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3934). For an
alternative definition, not requiring a dummy variable, see dfss2 3932.
Other possible definitions are given by dfss3 3935, dfss4 4232, sspss 4065,
ssequn1 4149, ssequn2 4152, sseqin2 4186, and ssdif0 4329.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11076 and 1ex 11170) or ℝ ( cf. df-r 11078 and reex 11159). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11159). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3932. (Revised by GG, 15-May-2025.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3914 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | wal 1538 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfss2 3932 dfss3 3935 dfss6 3936 dfssf 3937 ssel 3940 ssriv 3950 ssrdv 3952 sstr2 3953 sstr2OLD 3954 eqss 3962 nss 4011 ssralv 4015 ssrexv 4016 ralss 4021 rexss 4022 rabss2 4041 ssconb 4105 ssequn1 4149 unss 4153 ssin 4202 ssdif0 4329 difin0ss 4336 inssdif0 4337 reldisj 4416 ssundif 4451 sbcssg 4483 pwss 4586 snssb 4746 snssgOLD 4748 pwpw0 4777 ssuni 4896 unissb 4903 unissbOLD 4904 iunssf 5008 iunss 5009 dftr2 5216 axpweq 5306 axpow2 5322 ssextss 5413 ssrel 5745 ssrelOLD 5746 ssrel2 5748 ssrelrel 5759 reliun 5779 relop 5814 idrefALT 6084 funimass4 6925 dfom2 7844 inf2 9576 grothprim 10787 psslinpr 10984 ltaddpr 10987 isprm2 16652 vdwmc2 16950 acsmapd 18513 ismhp3 22029 dfconn2 23306 iskgen3 23436 metcld 25206 metcld2 25207 isch2 31152 pjnormssi 32097 ssiun3 32487 ssrelf 32543 bnj1361 34818 bnj978 34939 fineqvpow 35086 dffr5 35741 brsset 35877 sscoid 35901 ss-ax8 36213 relowlpssretop 37352 fvineqsneq 37400 unielss 43207 rp-fakeinunass 43504 rababg 43563 dfhe3 43764 snhesn 43775 dffrege76 43928 ntrneiiso 44080 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 expanduniss 44282 ismnuprim 44283 ismnushort 44290 onfrALTlem2 44536 trsspwALT 44807 trsspwALT2 44808 snssiALTVD 44816 snssiALT 44817 sstrALT2VD 44823 sstrALT2 44824 sbcssgVD 44872 onfrALTlem2VD 44878 sspwimp 44907 sspwimpVD 44908 sspwimpcf 44909 sspwimpcfVD 44910 sspwimpALT 44914 unisnALT 44915 ssclaxsep 44972 permaxpow 44999 icccncfext 45885 |
| Copyright terms: Public domain | W3C validator |