Description: Define the subclass
relationship. Exercise 9 of [TakeutiZaring] p. 18.
For example, {1, 2} ⊆ {1, 2, 3} (ex-ss 30250). Note that
𝐴
⊆ 𝐴 (proved in
ssid 4002). Contrast this relationship with the
relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3966). For a more
traditional definition, but requiring a dummy variable, see dfss2 3967.
Other possible definitions are given by dfss3 3968, dfss4 4259, sspss 4097,
ssequn1 4180, ssequn2 4183, sseqin2 4215, and ssdif0 4364.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it
applies to classes. It is much more common to refer to this as the subset
relation than subclass, especially since most of the time the arguments
are in fact sets (and for pragmatic reasons we don't want to need to use
different operations for sets). The way set.mm is set up, many things are
technically classes despite morally (and provably) being sets, like 1
(cf. df-1 11147 and 1ex 11241) or ℝ
( cf. df-r 11149 and reex 11230). This has to
do with the fact that there are no "set expressions": classes
are
expressions but there are only set variables in set.mm (cf.
https://us.metamath.org/downloads/grammar-ambiguity.txt 11230). This is why
we use ⊆ both for subclass relations and for
subset relations and
call it "subset". (Contributed by NM,
27-Apr-1994.) |