| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ss | Structured version Visualization version GIF version | ||
| Description: Define the subclass
relationship. Definition 5.9 of [TakeutiZaring]
p. 17. For example, {1, 2} ⊆ {1, 2, 3}
(ex-ss 30363). Note
that 𝐴 ⊆ 𝐴 (proved in ssid 3972). Contrast this relationship with
the relationship 𝐴 ⊊ 𝐵 (as will be defined in df-pss 3937). For an
alternative definition, not requiring a dummy variable, see dfss2 3935.
Other possible definitions are given by dfss3 3938, dfss4 4235, sspss 4068,
ssequn1 4152, ssequn2 4155, sseqin2 4189, and ssdif0 4332.
We prefer the label "ss" ("subset") for ⊆, despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 11083 and 1ex 11177) or ℝ ( cf. df-r 11085 and reex 11166). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 11166). This is why we use ⊆ both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 8-Jan-2002.) Revised from the original definition dfss2 3935. (Revised by GG, 15-May-2025.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3917 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2109 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wi 4 | . . 3 wff (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | wal 1538 | . 2 wff ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfss2 3935 dfss3 3938 dfss6 3939 dfssf 3940 ssel 3943 ssriv 3953 ssrdv 3955 sstr2 3956 sstr2OLD 3957 eqss 3965 nss 4014 ssralv 4018 ssrexv 4019 ralss 4024 rexss 4025 rabss2 4044 ssconb 4108 ssequn1 4152 unss 4156 ssin 4205 ssdif0 4332 difin0ss 4339 inssdif0 4340 reldisj 4419 ssundif 4454 sbcssg 4486 pwss 4589 snssb 4749 snssgOLD 4751 pwpw0 4780 ssuni 4899 unissb 4906 unissbOLD 4907 iunssf 5011 iunss 5012 dftr2 5219 axpweq 5309 axpow2 5325 ssextss 5416 ssrel 5748 ssrelOLD 5749 ssrel2 5751 ssrelrel 5762 reliun 5782 relop 5817 idrefALT 6087 funimass4 6928 dfom2 7847 inf2 9583 grothprim 10794 psslinpr 10991 ltaddpr 10994 isprm2 16659 vdwmc2 16957 acsmapd 18520 ismhp3 22036 dfconn2 23313 iskgen3 23443 metcld 25213 metcld2 25214 isch2 31159 pjnormssi 32104 ssiun3 32494 ssrelf 32550 bnj1361 34825 bnj978 34946 fineqvpow 35093 dffr5 35748 brsset 35884 sscoid 35908 ss-ax8 36220 relowlpssretop 37359 fvineqsneq 37407 unielss 43214 rp-fakeinunass 43511 rababg 43570 dfhe3 43771 snhesn 43782 dffrege76 43935 ntrneiiso 44087 ntrneik2 44088 ntrneix2 44089 ntrneikb 44090 expanduniss 44289 ismnuprim 44290 ismnushort 44297 onfrALTlem2 44543 trsspwALT 44814 trsspwALT2 44815 snssiALTVD 44823 snssiALT 44824 sstrALT2VD 44830 sstrALT2 44831 sbcssgVD 44879 onfrALTlem2VD 44885 sspwimp 44914 sspwimpVD 44915 sspwimpcf 44916 sspwimpcfVD 44917 sspwimpALT 44921 unisnALT 44922 ssclaxsep 44979 permaxpow 45006 icccncfext 45892 |
| Copyright terms: Public domain | W3C validator |