HomeHome Metamath Proof Explorer
Theorem List (p. 312 of 468)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29329)
  Hilbert Space Explorer  Hilbert Space Explorer
(29330-30852)
  Users' Mathboxes  Users' Mathboxes
(30853-46765)
 

Theorem List for Metamath Proof Explorer - 31101-31200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmptctf 31101 A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
β„²π‘₯𝐴    β‡’   (𝐴 β‰Ό Ο‰ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) β‰Ό Ο‰)
 
Theoremabrexctf 31102* An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
β„²π‘₯𝐴    β‡’   (𝐴 β‰Ό Ο‰ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = 𝐡} β‰Ό Ο‰)
 
Theorempadct 31103* Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
((𝐴 β‰Ό Ο‰ ∧ 𝑍 ∈ 𝑉 ∧ Β¬ 𝑍 ∈ 𝐴) β†’ βˆƒπ‘“(𝑓:β„•βŸΆ(𝐴 βˆͺ {𝑍}) ∧ 𝐴 βŠ† ran 𝑓 ∧ Fun (◑𝑓 β†Ύ 𝐴)))
 
TheoremcnvoprabOLD 31104* The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 7932 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
β„²π‘₯πœ“    &   β„²π‘¦πœ“    &   (π‘Ž = ⟨π‘₯, π‘¦βŸ© β†’ (πœ“ ↔ πœ‘))    &   (πœ“ β†’ π‘Ž ∈ (V Γ— V))    β‡’   β—‘{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘} = {βŸ¨π‘§, π‘ŽβŸ© ∣ πœ“}
 
Theoremf1od2 31105* Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ 𝐢 ∈ π‘Š)    &   ((πœ‘ ∧ 𝑧 ∈ 𝐷) β†’ (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ π‘Œ))    &   (πœ‘ β†’ (((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) ∧ 𝑧 = 𝐢) ↔ (𝑧 ∈ 𝐷 ∧ (π‘₯ = 𝐼 ∧ 𝑦 = 𝐽))))    β‡’   (πœ‘ β†’ 𝐹:(𝐴 Γ— 𝐡)–1-1-onto→𝐷)
 
Theoremfcobij 31106* Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.)
(πœ‘ β†’ 𝐺:𝑆–1-1-onto→𝑇)    &   (πœ‘ β†’ 𝑅 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑆 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ π‘Š)    β‡’   (πœ‘ β†’ (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)):(𝑆 ↑m 𝑅)–1-1-ontoβ†’(𝑇 ↑m 𝑅))
 
Theoremfcobijfs 31107* Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9215. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
(πœ‘ β†’ 𝐺:𝑆–1-1-onto→𝑇)    &   (πœ‘ β†’ 𝑅 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑆 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ π‘Š)    &   (πœ‘ β†’ 𝑂 ∈ 𝑆)    &   π‘„ = (πΊβ€˜π‘‚)    &   π‘‹ = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂}    &   π‘Œ = {β„Ž ∈ (𝑇 ↑m 𝑅) ∣ β„Ž finSupp 𝑄}    β‡’   (πœ‘ β†’ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-ontoβ†’π‘Œ)
 
Theoremsuppss3 31108* Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐺 = (π‘₯ ∈ 𝐴 ↦ 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝑍 ∈ π‘Š)    &   (πœ‘ β†’ 𝐹 Fn 𝐴)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴 ∧ (πΉβ€˜π‘₯) = 𝑍) β†’ 𝐡 = 𝑍)    β‡’   (πœ‘ β†’ (𝐺 supp 𝑍) βŠ† (𝐹 supp 𝑍))
 
Theoremfsuppcurry1 31109* Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
𝐺 = (π‘₯ ∈ 𝐡 ↦ (𝐢𝐹π‘₯))    &   (πœ‘ β†’ 𝑍 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐹 Fn (𝐴 Γ— 𝐡))    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   (πœ‘ β†’ 𝐹 finSupp 𝑍)    β‡’   (πœ‘ β†’ 𝐺 finSupp 𝑍)
 
Theoremfsuppcurry2 31110* Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
𝐺 = (π‘₯ ∈ 𝐴 ↦ (π‘₯𝐹𝐢))    &   (πœ‘ β†’ 𝑍 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐹 Fn (𝐴 Γ— 𝐡))    &   (πœ‘ β†’ 𝐢 ∈ 𝐡)    &   (πœ‘ β†’ 𝐹 finSupp 𝑍)    β‡’   (πœ‘ β†’ 𝐺 finSupp 𝑍)
 
Theoremoffinsupp1 31111* Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑍 ∈ π‘Š)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺:π΄βŸΆπ‘‡)    &   (πœ‘ β†’ 𝐹 finSupp π‘Œ)    &   ((πœ‘ ∧ π‘₯ ∈ 𝑇) β†’ (π‘Œπ‘…π‘₯) = 𝑍)    β‡’   (πœ‘ β†’ (𝐹 ∘f 𝑅𝐺) finSupp 𝑍)
 
Theoremffs2 31112 Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8022. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐢 = (𝐡 βˆ– {𝑍})    β‡’   ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ π‘Š ∧ 𝐹:𝐴⟢𝐡) β†’ (𝐹 supp 𝑍) = (◑𝐹 β€œ 𝐢))
 
Theoremffsrn 31113 The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
(πœ‘ β†’ 𝑍 ∈ π‘Š)    &   (πœ‘ β†’ 𝐹 ∈ 𝑉)    &   (πœ‘ β†’ Fun 𝐹)    &   (πœ‘ β†’ (𝐹 supp 𝑍) ∈ Fin)    β‡’   (πœ‘ β†’ ran 𝐹 ∈ Fin)
 
Theoremresf1o 31114* Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.)
𝑋 = {𝑓 ∈ (𝐡 ↑m 𝐴) ∣ (◑𝑓 β€œ (𝐡 βˆ– {𝑍})) βŠ† 𝐢}    &   πΉ = (𝑓 ∈ 𝑋 ↦ (𝑓 β†Ύ 𝐢))    β‡’   (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐢 βŠ† 𝐴) ∧ 𝑍 ∈ 𝐡) β†’ 𝐹:𝑋–1-1-ontoβ†’(𝐡 ↑m 𝐢))
 
Theoremmaprnin 31115* Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   ((𝐡 ∩ 𝐢) ↑m 𝐴) = {𝑓 ∈ (𝐡 ↑m 𝐴) ∣ ran 𝑓 βŠ† 𝐢}
 
Theoremfpwrelmapffslem 31116* Lemma for fpwrelmapffs 31118. For this theorem, the sets 𝐴 and 𝐡 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐴 ∈ V    &   π΅ ∈ V    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ’« 𝐡)    &   (πœ‘ β†’ 𝑅 = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ (πΉβ€˜π‘₯))})    β‡’   (πœ‘ β†’ (𝑅 ∈ Fin ↔ (ran 𝐹 βŠ† Fin ∧ (𝐹 supp βˆ…) ∈ Fin)))
 
Theoremfpwrelmap 31117* Define a canonical mapping between functions from 𝐴 into subsets of 𝐡 and the relations with domain 𝐴 and range within 𝐡. Note that the same relation is used in axdc2lem 10254 and marypha2lem1 9242. (Contributed by Thierry Arnoux, 28-Aug-2017.)
𝐴 ∈ V    &   π΅ ∈ V    &   π‘€ = (𝑓 ∈ (𝒫 𝐡 ↑m 𝐴) ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ (π‘“β€˜π‘₯))})    β‡’   π‘€:(𝒫 𝐡 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 Γ— 𝐡)
 
Theoremfpwrelmapffs 31118* Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐴 ∈ V    &   π΅ ∈ V    &   π‘€ = (𝑓 ∈ (𝒫 𝐡 ↑m 𝐴) ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ (π‘“β€˜π‘₯))})    &   π‘† = {𝑓 ∈ ((𝒫 𝐡 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp βˆ…) ∈ Fin}    β‡’   (𝑀 β†Ύ 𝑆):𝑆–1-1-ontoβ†’(𝒫 (𝐴 Γ— 𝐡) ∩ Fin)
 
20.3.5  Real and Complex Numbers
 
20.3.5.1  Complex operations - misc. additions
 
Theoremcreq0 31119 The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 12016. (Contributed by Thierry Arnoux, 20-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((𝐴 = 0 ∧ 𝐡 = 0) ↔ (𝐴 + (i Β· 𝐡)) = 0))
 
Theorem1nei 31120 The imaginary unit i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023.)
1 β‰  i
 
Theorem1neg1t1neg1 31121 An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.)
(𝑁 ∈ {-1, 1} β†’ (𝑁 Β· 𝑁) = 1)
 
Theoremnnmulge 31122 Multiplying by a positive integer 𝑀 yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.)
((𝑀 ∈ β„• ∧ 𝑁 ∈ β„•0) β†’ 𝑁 ≀ (𝑀 Β· 𝑁))
 
20.3.5.2  Ordering on reals - misc additions
 
Theoremlt2addrd 31123* If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < (𝐡 + 𝐢))    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ ℝ βˆƒπ‘ ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐡 ∧ 𝑐 < 𝐢))
 
20.3.5.3  Extended reals - misc additions
 
Theoremxrlelttric 31124 Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 ≀ 𝐡 ∨ 𝐡 < 𝐴))
 
Theoremxaddeq0 31125 Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ ((𝐴 +𝑒 𝐡) = 0 ↔ 𝐴 = -𝑒𝐡))
 
Theoremxrinfm 31126 The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.)
inf(ℝ*, ℝ*, < ) = -∞
 
Theoremle2halvesd 31127 A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ≀ (𝐢 / 2))    &   (πœ‘ β†’ 𝐡 ≀ (𝐢 / 2))    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) ≀ 𝐢)
 
Theoremxraddge02 31128 A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (0 ≀ 𝐡 β†’ 𝐴 ≀ (𝐴 +𝑒 𝐡)))
 
Theoremxrge0addge 31129 A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ (0[,]+∞)) β†’ 𝐴 ≀ (𝐴 +𝑒 𝐡))
 
Theoremxlt2addrd 31130* If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 β‰  -∞)    &   (πœ‘ β†’ 𝐢 β‰  -∞)    &   (πœ‘ β†’ 𝐴 < (𝐡 +𝑒 𝐢))    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ ℝ* βˆƒπ‘ ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐡 ∧ 𝑐 < 𝐢))
 
Theoremxrsupssd 31131 Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
(πœ‘ β†’ 𝐡 βŠ† 𝐢)    &   (πœ‘ β†’ 𝐢 βŠ† ℝ*)    β‡’   (πœ‘ β†’ sup(𝐡, ℝ*, < ) ≀ sup(𝐢, ℝ*, < ))
 
Theoremxrge0infss 31132* Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
(𝐴 βŠ† (0[,]+∞) β†’ βˆƒπ‘₯ ∈ (0[,]+∞)(βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑦 < π‘₯ ∧ βˆ€π‘¦ ∈ (0[,]+∞)(π‘₯ < 𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 𝑧 < 𝑦)))
 
Theoremxrge0infssd 31133 Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
(πœ‘ β†’ 𝐢 βŠ† 𝐡)    &   (πœ‘ β†’ 𝐡 βŠ† (0[,]+∞))    β‡’   (πœ‘ β†’ inf(𝐡, (0[,]+∞), < ) ≀ inf(𝐢, (0[,]+∞), < ))
 
Theoremxrge0addcld 31134 Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.)
(πœ‘ β†’ 𝐴 ∈ (0[,]+∞))    &   (πœ‘ β†’ 𝐡 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ (𝐴 +𝑒 𝐡) ∈ (0[,]+∞))
 
Theoremxrge0subcld 31135 Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.)
(πœ‘ β†’ 𝐴 ∈ (0[,]+∞))    &   (πœ‘ β†’ 𝐡 ∈ (0[,]+∞))    &   (πœ‘ β†’ 𝐡 ≀ 𝐴)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 -𝑒𝐡) ∈ (0[,]+∞))
 
Theoreminfxrge0lb 31136 A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
(πœ‘ β†’ 𝐴 βŠ† (0[,]+∞))    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    β‡’   (πœ‘ β†’ inf(𝐴, (0[,]+∞), < ) ≀ 𝐡)
 
Theoreminfxrge0glb 31137* The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
(πœ‘ β†’ 𝐴 βŠ† (0[,]+∞))    &   (πœ‘ β†’ 𝐡 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ (inf(𝐴, (0[,]+∞), < ) < 𝐡 ↔ βˆƒπ‘₯ ∈ 𝐴 π‘₯ < 𝐡))
 
Theoreminfxrge0gelb 31138* The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
(πœ‘ β†’ 𝐴 βŠ† (0[,]+∞))    &   (πœ‘ β†’ 𝐡 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ (𝐡 ≀ inf(𝐴, (0[,]+∞), < ) ↔ βˆ€π‘₯ ∈ 𝐴 𝐡 ≀ π‘₯))
 
Theoremxrofsup 31139 The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.)
(πœ‘ β†’ 𝑋 βŠ† ℝ*)    &   (πœ‘ β†’ π‘Œ βŠ† ℝ*)    &   (πœ‘ β†’ sup(𝑋, ℝ*, < ) β‰  -∞)    &   (πœ‘ β†’ sup(π‘Œ, ℝ*, < ) β‰  -∞)    &   (πœ‘ β†’ 𝑍 = ( +𝑒 β€œ (𝑋 Γ— π‘Œ)))    β‡’   (πœ‘ β†’ sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(π‘Œ, ℝ*, < )))
 
Theoremsupxrnemnf 31140 The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.)
((𝐴 βŠ† ℝ* ∧ 𝐴 β‰  βˆ… ∧ Β¬ -∞ ∈ 𝐴) β†’ sup(𝐴, ℝ*, < ) β‰  -∞)
 
20.3.5.4  Extended nonnegative integers - misc additions
 
Theoremxnn0gt0 31141 Nonzero extended nonnegative integers are strictly greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.)
((𝑁 ∈ β„•0* ∧ 𝑁 β‰  0) β†’ 0 < 𝑁)
 
Theoremxnn01gt 31142 An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023.)
(𝑁 ∈ β„•0* β†’ (Β¬ 𝑁 ∈ {0, 1} ↔ 1 < 𝑁))
 
Theoremnn0xmulclb 31143 Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.)
(((𝐴 ∈ β„•0* ∧ 𝐡 ∈ β„•0*) ∧ (𝐴 β‰  0 ∧ 𝐡 β‰  0)) β†’ ((𝐴 Β·e 𝐡) ∈ β„•0 ↔ (𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0)))
 
20.3.5.5  Real number intervals - misc additions
 
Theoremjoiniooico 31144 Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ (𝐴 < 𝐡 ∧ 𝐡 ≀ 𝐢)) β†’ (((𝐴(,)𝐡) ∩ (𝐡[,)𝐢)) = βˆ… ∧ ((𝐴(,)𝐡) βˆͺ (𝐡[,)𝐢)) = (𝐴(,)𝐢)))
 
Theoremubico 31145 A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ*) β†’ Β¬ 𝐡 ∈ (𝐴[,)𝐡))
 
Theoremxeqlelt 31146 Equality in terms of 'less than or equal to', 'less than'. (Contributed by Thierry Arnoux, 5-Jul-2017.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 = 𝐡 ↔ (𝐴 ≀ 𝐡 ∧ Β¬ 𝐴 < 𝐡)))
 
Theoremeliccelico 31147 Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 ≀ 𝐡) β†’ (𝐢 ∈ (𝐴[,]𝐡) ↔ (𝐢 ∈ (𝐴[,)𝐡) ∨ 𝐢 = 𝐡)))
 
Theoremelicoelioo 31148 Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 < 𝐡) β†’ (𝐢 ∈ (𝐴[,)𝐡) ↔ (𝐢 = 𝐴 ∨ 𝐢 ∈ (𝐴(,)𝐡))))
 
Theoremiocinioc2 31149 Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ 𝐴 ≀ 𝐡) β†’ ((𝐴(,]𝐢) ∩ (𝐡(,]𝐢)) = (𝐡(,]𝐢))
 
Theoremxrdifh 31150 Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.)
𝐴 ∈ ℝ*    β‡’   (ℝ* βˆ– (𝐴[,]+∞)) = (-∞[,)𝐴)
 
Theoremiocinif 31151 Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) β†’ ((𝐴(,]𝐢) ∩ (𝐡(,]𝐢)) = if(𝐴 < 𝐡, (𝐡(,]𝐢), (𝐴(,]𝐢)))
 
Theoremdifioo 31152 The difference between two open intervals sharing the same lower bound. (Contributed by Thierry Arnoux, 26-Sep-2017.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ 𝐴 < 𝐡) β†’ ((𝐴(,)𝐢) βˆ– (𝐴(,)𝐡)) = (𝐡[,)𝐢))
 
Theoremdifico 31153 The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ (𝐴 ≀ 𝐡 ∧ 𝐡 ≀ 𝐢)) β†’ ((𝐴[,)𝐢) βˆ– (𝐡[,)𝐢)) = (𝐴[,)𝐡))
 
20.3.5.6  Finite intervals of integers - misc additions
 
Theoremuzssico 31154 Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.)
(𝑀 ∈ β„€ β†’ (β„€β‰₯β€˜π‘€) βŠ† (𝑀[,)+∞))
 
Theoremfz2ssnn0 31155 A finite set of sequential integers that is a subset of β„•0. (Contributed by Thierry Arnoux, 8-Dec-2021.)
(𝑀 ∈ β„•0 β†’ (𝑀...𝑁) βŠ† β„•0)
 
Theoremnndiffz1 31156 Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.)
(𝑁 ∈ β„•0 β†’ (β„• βˆ– (1...𝑁)) = (β„€β‰₯β€˜(𝑁 + 1)))
 
Theoremssnnssfz 31157* For any finite subset of β„•, find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.)
(𝐴 ∈ (𝒫 β„• ∩ Fin) β†’ βˆƒπ‘› ∈ β„• 𝐴 βŠ† (1...𝑛))
 
Theoremfzne1 31158 Elementhood in a finite set of sequential integers, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024.)
((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 β‰  𝑀) β†’ 𝐾 ∈ ((𝑀 + 1)...𝑁))
 
Theoremfzm1ne1 31159 Elementhood of an integer and its predecessor in finite intervals of integers. (Contributed by Thierry Arnoux, 1-Jan-2024.)
((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 β‰  𝑀) β†’ (𝐾 βˆ’ 1) ∈ (𝑀...(𝑁 βˆ’ 1)))
 
Theoremfzspl 31160 Split the last element of a finite set of sequential integers. More generic than fzsuc 13353. (Contributed by Thierry Arnoux, 7-Nov-2016.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑀...𝑁) = ((𝑀...(𝑁 βˆ’ 1)) βˆͺ {𝑁}))
 
Theoremfzdif2 31161 Split the last element of a finite set of sequential integers. More generic than fzsuc 13353. (Contributed by Thierry Arnoux, 22-Aug-2020.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ ((𝑀...𝑁) βˆ– {𝑁}) = (𝑀...(𝑁 βˆ’ 1)))
 
Theoremfzodif2 31162 Split the last element of a half-open range of sequential integers. (Contributed by Thierry Arnoux, 5-Dec-2021.)
(𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ ((𝑀..^(𝑁 + 1)) βˆ– {𝑁}) = (𝑀..^𝑁))
 
Theoremfzodif1 31163 Set difference of two half-open range of sequential integers sharing the same starting value. (Contributed by Thierry Arnoux, 2-Oct-2023.)
(𝐾 ∈ (𝑀...𝑁) β†’ ((𝑀..^𝑁) βˆ– (𝑀..^𝐾)) = (𝐾..^𝑁))
 
Theoremfzsplit3 31164 Split a finite interval of integers into two parts. (Contributed by Thierry Arnoux, 2-May-2017.)
(𝐾 ∈ (𝑀...𝑁) β†’ (𝑀...𝑁) = ((𝑀...(𝐾 βˆ’ 1)) βˆͺ (𝐾...𝑁)))
 
Theorembcm1n 31165 The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
((𝐾 ∈ (0...(𝑁 βˆ’ 1)) ∧ 𝑁 ∈ β„•) β†’ (((𝑁 βˆ’ 1)C𝐾) / (𝑁C𝐾)) = ((𝑁 βˆ’ 𝐾) / 𝑁))
 
20.3.5.7  Half-open integer ranges - misc additions
 
Theoremiundisjfi 31166* Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 24761. (Contributed by Thierry Arnoux, 15-Feb-2017.)
Ⅎ𝑛𝐡    &   (𝑛 = π‘˜ β†’ 𝐴 = 𝐡)    β‡’   βˆͺ 𝑛 ∈ (1..^𝑁)𝐴 = βˆͺ 𝑛 ∈ (1..^𝑁)(𝐴 βˆ– βˆͺ π‘˜ ∈ (1..^𝑛)𝐡)
 
Theoremiundisj2fi 31167* A disjoint union is disjoint, finite version. Cf. iundisj2 24762. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Ⅎ𝑛𝐡    &   (𝑛 = π‘˜ β†’ 𝐴 = 𝐡)    β‡’   Disj 𝑛 ∈ (1..^𝑁)(𝐴 βˆ– βˆͺ π‘˜ ∈ (1..^𝑛)𝐡)
 
Theoremiundisjcnt 31168* Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Ⅎ𝑛𝐡    &   (𝑛 = π‘˜ β†’ 𝐴 = 𝐡)    &   (πœ‘ β†’ (𝑁 = β„• ∨ 𝑁 = (1..^𝑀)))    β‡’   (πœ‘ β†’ βˆͺ 𝑛 ∈ 𝑁 𝐴 = βˆͺ 𝑛 ∈ 𝑁 (𝐴 βˆ– βˆͺ π‘˜ ∈ (1..^𝑛)𝐡))
 
Theoremiundisj2cnt 31169* A countable disjoint union is disjoint. Cf. iundisj2 24762. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Ⅎ𝑛𝐡    &   (𝑛 = π‘˜ β†’ 𝐴 = 𝐡)    &   (πœ‘ β†’ (𝑁 = β„• ∨ 𝑁 = (1..^𝑀)))    β‡’   (πœ‘ β†’ Disj 𝑛 ∈ 𝑁 (𝐴 βˆ– βˆͺ π‘˜ ∈ (1..^𝑛)𝐡))
 
Theoremfzone1 31170 Elementhood in a half-open interval, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024.)
((𝐾 ∈ (𝑀..^𝑁) ∧ 𝐾 β‰  𝑀) β†’ 𝐾 ∈ ((𝑀 + 1)..^𝑁))
 
Theoremfzom1ne1 31171 Elementhood in a half-open interval, except the lower bound, shifted by one. (Contributed by Thierry Arnoux, 1-Jan-2024.)
((𝐾 ∈ (𝑀..^𝑁) ∧ 𝐾 β‰  𝑀) β†’ (𝐾 βˆ’ 1) ∈ (𝑀..^(𝑁 βˆ’ 1)))
 
Theoremf1ocnt 31172* Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with β„• or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 31168 or iundisj2cnt 31169. (Contributed by Thierry Arnoux, 25-Jul-2020.)
(𝐴 β‰Ό Ο‰ β†’ βˆƒπ‘“(𝑓:dom 𝑓–1-1-onto→𝐴 ∧ (dom 𝑓 = β„• ∨ dom 𝑓 = (1..^((β™―β€˜π΄) + 1)))))
 
Theoremfz1nnct 31173 NN and integer ranges starting from 1 are countable. (Contributed by Thierry Arnoux, 25-Jul-2020.)
((𝐴 = β„• ∨ 𝐴 = (1..^𝑀)) β†’ 𝐴 β‰Ό Ο‰)
 
Theoremfz1nntr 31174 NN and integer ranges starting from 1 are a transitive family of set. (Contributed by Thierry Arnoux, 25-Jul-2020.)
(((𝐴 = β„• ∨ 𝐴 = (1..^𝑀)) ∧ 𝑁 ∈ 𝐴) β†’ (1..^𝑁) βŠ† 𝐴)
 
20.3.5.8  The ` # ` (set size) function - misc additions
 
Theoremhashunif 31175* The cardinality of a disjoint finite union of finite sets. Cf. hashuni 15587. (Contributed by Thierry Arnoux, 17-Feb-2017.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† Fin)    &   (πœ‘ β†’ Disj π‘₯ ∈ 𝐴 π‘₯)    β‡’   (πœ‘ β†’ (β™―β€˜βˆͺ 𝐴) = Ξ£π‘₯ ∈ 𝐴 (β™―β€˜π‘₯))
 
Theoremhashxpe 31176 The size of the Cartesian product of two finite sets is the product of their sizes. This is a version of hashxp 14198 valid for infinite sets, which uses extended real numbers. (Contributed by Thierry Arnoux, 27-May-2023.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (β™―β€˜(𝐴 Γ— 𝐡)) = ((β™―β€˜π΄) Β·e (β™―β€˜π΅)))
 
Theoremhashgt1 31177 Restate "set contains at least two elements" in terms of elementhood. (Contributed by Thierry Arnoux, 21-Nov-2023.)
(𝐴 ∈ 𝑉 β†’ (Β¬ 𝐴 ∈ (β—‘β™― β€œ {0, 1}) ↔ 1 < (β™―β€˜π΄)))
 
20.3.5.9  The greatest common divisor operator - misc. add
 
Theoremdvdszzq 31178 Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
𝑁 = (𝐴 / 𝐡)    &   (πœ‘ β†’ 𝑃 ∈ β„™)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    &   (πœ‘ β†’ 𝐡 ∈ β„€)    &   (πœ‘ β†’ 𝐡 β‰  0)    &   (πœ‘ β†’ 𝑃 βˆ₯ 𝐴)    &   (πœ‘ β†’ Β¬ 𝑃 βˆ₯ 𝐡)    β‡’   (πœ‘ β†’ 𝑃 βˆ₯ 𝑁)
 
Theoremprmdvdsbc 31179 Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023.)
((𝑃 ∈ β„™ ∧ 𝑁 ∈ (1...(𝑃 βˆ’ 1))) β†’ 𝑃 βˆ₯ (𝑃C𝑁))
 
Theoremnumdenneg 31180 Numerator and denominator of the negative. (Contributed by Thierry Arnoux, 27-Oct-2017.)
(𝑄 ∈ β„š β†’ ((numerβ€˜-𝑄) = -(numerβ€˜π‘„) ∧ (denomβ€˜-𝑄) = (denomβ€˜π‘„)))
 
Theoremdivnumden2 31181 Calculate the reduced form of a quotient using gcd. This version extends divnumden 16501 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ -𝐡 ∈ β„•) β†’ ((numerβ€˜(𝐴 / 𝐡)) = -(𝐴 / (𝐴 gcd 𝐡)) ∧ (denomβ€˜(𝐴 / 𝐡)) = -(𝐡 / (𝐴 gcd 𝐡))))
 
20.3.5.10  Integers
 
Theoremnnindf 31182* Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.)
β„²π‘¦πœ‘    &   (π‘₯ = 1 β†’ (πœ‘ ↔ πœ“))    &   (π‘₯ = 𝑦 β†’ (πœ‘ ↔ πœ’))    &   (π‘₯ = (𝑦 + 1) β†’ (πœ‘ ↔ πœƒ))    &   (π‘₯ = 𝐴 β†’ (πœ‘ ↔ 𝜏))    &   πœ“    &   (𝑦 ∈ β„• β†’ (πœ’ β†’ πœƒ))    β‡’   (𝐴 ∈ β„• β†’ 𝜏)
 
Theoremnn0min 31183* Extracting the minimum positive integer for which a property πœ’ does not hold. This uses substitutions similar to nn0ind 12465. (Contributed by Thierry Arnoux, 6-May-2018.)
(𝑛 = 0 β†’ (πœ“ ↔ πœ’))    &   (𝑛 = π‘š β†’ (πœ“ ↔ πœƒ))    &   (𝑛 = (π‘š + 1) β†’ (πœ“ ↔ 𝜏))    &   (πœ‘ β†’ Β¬ πœ’)    &   (πœ‘ β†’ βˆƒπ‘› ∈ β„• πœ“)    β‡’   (πœ‘ β†’ βˆƒπ‘š ∈ β„•0 (Β¬ πœƒ ∧ 𝜏))
 
Theoremsubne0nn 31184 A nonnegative difference is positive if the two numbers are not equal. (Contributed by Thierry Arnoux, 17-Dec-2023.)
(πœ‘ β†’ 𝑀 ∈ β„‚)    &   (πœ‘ β†’ 𝑁 ∈ β„‚)    &   (πœ‘ β†’ (𝑀 βˆ’ 𝑁) ∈ β„•0)    &   (πœ‘ β†’ 𝑀 β‰  𝑁)    β‡’   (πœ‘ β†’ (𝑀 βˆ’ 𝑁) ∈ β„•)
 
Theoremltesubnnd 31185 Subtracting an integer number from another number decreases it. See ltsubrpd 12854. (Contributed by Thierry Arnoux, 18-Apr-2017.)
(πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ ((𝑀 + 1) βˆ’ 𝑁) ≀ 𝑀)
 
Theoremfprodeq02 31186* If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
(π‘˜ = 𝐾 β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐾 ∈ 𝐴)    &   (πœ‘ β†’ 𝐢 = 0)    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = 0)
 
Theorempr01ssre 31187 The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.)
{0, 1} βŠ† ℝ
 
Theoremfprodex01 31188* A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
(π‘˜ = 𝑙 β†’ 𝐡 = 𝐢)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ {0, 1})    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = if(βˆ€π‘™ ∈ 𝐴 𝐢 = 1, 1, 0))
 
Theoremprodpr 31189* A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
(π‘˜ = 𝐴 β†’ 𝐷 = 𝐸)    &   (π‘˜ = 𝐡 β†’ 𝐷 = 𝐹)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐸 ∈ β„‚)    &   (πœ‘ β†’ 𝐹 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ {𝐴, 𝐡}𝐷 = (𝐸 Β· 𝐹))
 
Theoremprodtp 31190* A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
(π‘˜ = 𝐴 β†’ 𝐷 = 𝐸)    &   (π‘˜ = 𝐡 β†’ 𝐷 = 𝐹)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐸 ∈ β„‚)    &   (πœ‘ β†’ 𝐹 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (π‘˜ = 𝐢 β†’ 𝐷 = 𝐺)    &   (πœ‘ β†’ 𝐢 ∈ 𝑋)    &   (πœ‘ β†’ 𝐺 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 β‰  𝐢)    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    β‡’   (πœ‘ β†’ βˆπ‘˜ ∈ {𝐴, 𝐡, 𝐢}𝐷 = ((𝐸 Β· 𝐹) Β· 𝐺))
 
Theoremfsumub 31191* An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021.)
(π‘˜ = 𝐾 β†’ 𝐡 = 𝐷)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = 𝐢)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝐾 ∈ 𝐴)    β‡’   (πœ‘ β†’ 𝐷 ≀ 𝐢)
 
Theoremfsumiunle 31192* Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ Fin)    &   (((πœ‘ ∧ π‘₯ ∈ 𝐴) ∧ π‘˜ ∈ 𝐡) β†’ 𝐢 ∈ ℝ)    &   (((πœ‘ ∧ π‘₯ ∈ 𝐴) ∧ π‘˜ ∈ 𝐡) β†’ 0 ≀ 𝐢)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ βˆͺ π‘₯ ∈ 𝐴 𝐡𝐢 ≀ Ξ£π‘₯ ∈ 𝐴 Ξ£π‘˜ ∈ 𝐡 𝐢)
 
20.3.5.11  Decimal numbers
 
Theoremdfdec100 31193 Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.)
𝐴 ∈ β„•0    &   π΅ ∈ β„•0    &   πΆ ∈ ℝ    β‡’   π΄π΅πΆ = ((100 Β· 𝐴) + 𝐡𝐢)
 
20.3.6  Decimal expansion

Define a decimal expansion constructor. The decimal expansions built with this constructor are not meant to be used alone outside of this chapter. Rather, they are meant to be used exclusively as part of a decimal number with a decimal fraction, for example (3.14159).

That decimal point operator is defined in the next section. The bulk of these constructions have originally been proposed by David A. Wheeler on 12-May-2015, and discussed with Mario Carneiro in this thread: https://groups.google.com/g/metamath/c/2AW7T3d2YiQ.

 
Syntaxcdp2 31194 Constant used for decimal fraction constructor. See df-dp2 31195.
class 𝐴𝐡
 
Definitiondf-dp2 31195 Define the "decimal fraction constructor", which is used to build up "decimal fractions" in base 10. This is intentionally similar to df-dec 12488. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.)
𝐴𝐡 = (𝐴 + (𝐡 / 10))
 
Theoremdp2eq1 31196 Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
(𝐴 = 𝐡 β†’ 𝐴𝐢 = 𝐡𝐢)
 
Theoremdp2eq2 31197 Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
(𝐴 = 𝐡 β†’ 𝐢𝐴 = 𝐢𝐡)
 
Theoremdp2eq1i 31198 Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
𝐴 = 𝐡    β‡’   π΄πΆ = 𝐡𝐢
 
Theoremdp2eq2i 31199 Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
𝐴 = 𝐡    β‡’   πΆπ΄ = 𝐢𝐡
 
Theoremdp2eq12i 31200 Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.)
𝐴 = 𝐡    &   πΆ = 𝐷    β‡’   π΄πΆ = 𝐡𝐷
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46765
  Copyright terms: Public domain < Previous  Next >