HomeHome Metamath Proof Explorer
Theorem List (p. 312 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30158)
  Hilbert Space Explorer  Hilbert Space Explorer
(30159-31681)
  Users' Mathboxes  Users' Mathboxes
(31682-47805)
 

Theorem List for Metamath Proof Explorer - 31101-31200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembdopln 31101 A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ BndLinOp β†’ 𝑇 ∈ LinOp)
 
Theorembdopf 31102 A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ BndLinOp β†’ 𝑇: β„‹βŸΆ β„‹)
 
TheoremnmopsetretALT 31103* The set in the supremum of the operator norm definition df-nmop 31079 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
 
TheoremnmopsetretHIL 31104* The set in the supremum of the operator norm definition df-nmop 31079 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
 
Theoremnmopsetn0 31105* The set in the supremum of the operator norm definition df-nmop 31079 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
(normβ„Žβ€˜(π‘‡β€˜0β„Ž)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (normβ„Žβ€˜(π‘‡β€˜π‘¦)))}
 
Theoremnmopxr 31106 The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (normopβ€˜π‘‡) ∈ ℝ*)
 
Theoremnmoprepnf 31107 The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ ((normopβ€˜π‘‡) ∈ ℝ ↔ (normopβ€˜π‘‡) β‰  +∞))
 
Theoremnmopgtmnf 31108 The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ -∞ < (normopβ€˜π‘‡))
 
Theoremnmopreltpnf 31109 The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ ((normopβ€˜π‘‡) ∈ ℝ ↔ (normopβ€˜π‘‡) < +∞))
 
Theoremnmopre 31110 The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.)
(𝑇 ∈ BndLinOp β†’ (normopβ€˜π‘‡) ∈ ℝ)
 
Theoremelbdop2 31111 Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normopβ€˜π‘‡) ∈ ℝ))
 
Theoremelunop 31112* Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp ↔ (𝑇: ℋ–ontoβ†’ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih (π‘‡β€˜π‘¦)) = (π‘₯ Β·ih 𝑦)))
 
Theoremelhmop 31113* Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇 ∈ HrmOp ↔ (𝑇: β„‹βŸΆ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘¦)) = ((π‘‡β€˜π‘₯) Β·ih 𝑦)))
 
Theoremhmopf 31114 A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
(𝑇 ∈ HrmOp β†’ 𝑇: β„‹βŸΆ β„‹)
 
Theoremhmopex 31115 The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.)
HrmOp ∈ V
 
Theoremnmfnval 31116* Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
 
Theoremnmfnsetre 31117* The set in the supremum of the functional norm definition df-nmfn 31085 is a set of reals. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
 
Theoremnmfnsetn0 31118* The set in the supremum of the functional norm definition df-nmfn 31085 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(absβ€˜(π‘‡β€˜0β„Ž)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}
 
Theoremnmfnxr 31119 The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) ∈ ℝ*)
 
Theoremnmfnrepnf 31120 The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ ((normfnβ€˜π‘‡) ∈ ℝ ↔ (normfnβ€˜π‘‡) β‰  +∞))
 
Theoremnlfnval 31121 Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ (nullβ€˜π‘‡) = (◑𝑇 β€œ {0}))
 
Theoremelcnfn 31122* Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇 ∈ ContFn ↔ (𝑇: β„‹βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑧 β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ (π‘‡β€˜π‘₯))) < 𝑦)))
 
Theoremellnfn 31123* Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇 ∈ LinFn ↔ (𝑇: β„‹βŸΆβ„‚ ∧ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ β„‹ βˆ€π‘§ ∈ β„‹ (π‘‡β€˜((π‘₯ Β·β„Ž 𝑦) +β„Ž 𝑧)) = ((π‘₯ Β· (π‘‡β€˜π‘¦)) + (π‘‡β€˜π‘§))))
 
Theoremlnfnf 31124 A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ LinFn β†’ 𝑇: β„‹βŸΆβ„‚)
 
Theoremdfadj2 31125* Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
adjβ„Ž = {βŸ¨π‘‘, π‘’βŸ© ∣ (𝑑: β„‹βŸΆ β„‹ ∧ 𝑒: β„‹βŸΆ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ (π‘₯ Β·ih (π‘‘β€˜π‘¦)) = ((π‘’β€˜π‘₯) Β·ih 𝑦))}
 
Theoremfunadj 31126 Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Fun adjβ„Ž
 
Theoremdmadjss 31127 The domain of the adjoint function is a subset of the maps from β„‹ to β„‹. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
dom adjβ„Ž βŠ† ( β„‹ ↑m β„‹)
 
Theoremdmadjop 31128 A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž β†’ 𝑇: β„‹βŸΆ β„‹)
 
Theoremadjeu 31129* Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (𝑇 ∈ dom adjβ„Ž ↔ βˆƒ!𝑒 ∈ ( β„‹ ↑m β„‹)βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘¦)) = ((π‘’β€˜π‘₯) Β·ih 𝑦)))
 
Theoremadjval 31130* Value of the adjoint function for 𝑇 in the domain of adjβ„Ž. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž β†’ (adjβ„Žβ€˜π‘‡) = (℩𝑒 ∈ ( β„‹ ↑m β„‹)βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘¦)) = ((π‘’β€˜π‘₯) Β·ih 𝑦)))
 
Theoremadjval2 31131* Value of the adjoint function. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž β†’ (adjβ„Žβ€˜π‘‡) = (℩𝑒 ∈ ( β„‹ ↑m β„‹)βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih 𝑦) = (π‘₯ Β·ih (π‘’β€˜π‘¦))))
 
Theoremcnvadj 31132 The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
β—‘adjβ„Ž = adjβ„Ž
 
Theoremfuncnvadj 31133 The converse of the adjoint function is a function. (Contributed by NM, 25-Jan-2006.) (New usage is discouraged.)
Fun β—‘adjβ„Ž
 
Theoremadj1o 31134 The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
adjβ„Ž:dom adjβ„Žβ€“1-1-ontoβ†’dom adjβ„Ž
 
Theoremdmadjrn 31135 The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž β†’ (adjβ„Žβ€˜π‘‡) ∈ dom adjβ„Ž)
 
Theoremeigvecval 31136* The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (eigvecβ€˜π‘‡) = {π‘₯ ∈ ( β„‹ βˆ– 0β„‹) ∣ βˆƒπ‘¦ ∈ β„‚ (π‘‡β€˜π‘₯) = (𝑦 Β·β„Ž π‘₯)})
 
Theoremeigvalfval 31137* The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (eigvalβ€˜π‘‡) = (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
 
Theoremspecval 31138* The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (Lambdaβ€˜π‘‡) = {π‘₯ ∈ β„‚ ∣ Β¬ (𝑇 βˆ’op (π‘₯ Β·op ( I β†Ύ β„‹))): ℋ–1-1β†’ β„‹})
 
Theoremspeccl 31139 The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (Lambdaβ€˜π‘‡) βŠ† β„‚)
 
Theoremhhlnoi 31140 The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©    &   πΏ = (π‘ˆ LnOp π‘ˆ)    β‡’   LinOp = 𝐿
 
Theoremhhnmoi 31141 The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©    &   π‘ = (π‘ˆ normOpOLD π‘ˆ)    β‡’   normop = 𝑁
 
Theoremhhbloi 31142 A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©    &   π΅ = (π‘ˆ BLnOp π‘ˆ)    β‡’   BndLinOp = 𝐡
 
Theoremhh0oi 31143 The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.)
π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©    &   π‘ = (π‘ˆ 0op π‘ˆ)    β‡’    0hop = 𝑍
 
Theoremhhcno 31144 The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
𝐷 = (normβ„Ž ∘ βˆ’β„Ž )    &   π½ = (MetOpenβ€˜π·)    β‡’   ContOp = (𝐽 Cn 𝐽)
 
Theoremhhcnf 31145 The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
𝐷 = (normβ„Ž ∘ βˆ’β„Ž )    &   π½ = (MetOpenβ€˜π·)    &   πΎ = (TopOpenβ€˜β„‚fld)    β‡’   ContFn = (𝐽 Cn 𝐾)
 
Theoremdmadjrnb 31146 The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv 6923.) (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž ↔ (adjβ„Žβ€˜π‘‡) ∈ dom adjβ„Ž)
 
Theoremnmoplb 31147 A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (normβ„Žβ€˜(π‘‡β€˜π΄)) ≀ (normopβ€˜π‘‡))
 
Theoremnmopub 31148* An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ ℝ*) β†’ ((normopβ€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
 
Theoremnmopub2tALT 31149* An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) ≀ (𝐴 Β· (normβ„Žβ€˜π‘₯))) β†’ (normopβ€˜π‘‡) ≀ 𝐴)
 
Theoremnmopub2tHIL 31150* An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) ≀ (𝐴 Β· (normβ„Žβ€˜π‘₯))) β†’ (normopβ€˜π‘‡) ≀ 𝐴)
 
Theoremnmopge0 31151 The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ 0 ≀ (normopβ€˜π‘‡))
 
Theoremnmopgt0 31152 A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ ((normopβ€˜π‘‡) β‰  0 ↔ 0 < (normopβ€˜π‘‡)))
 
Theoremcnopc 31153* Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
((𝑇 ∈ ContOp ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (normβ„Žβ€˜((π‘‡β€˜π‘¦) βˆ’β„Ž (π‘‡β€˜π΄))) < 𝐡))
 
Theoremlnopl 31154 Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
(((𝑇 ∈ LinOp ∧ 𝐴 ∈ β„‚) ∧ (𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹)) β†’ (π‘‡β€˜((𝐴 Β·β„Ž 𝐡) +β„Ž 𝐢)) = ((𝐴 Β·β„Ž (π‘‡β€˜π΅)) +β„Ž (π‘‡β€˜πΆ)))
 
Theoremunop 31155 Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
((𝑇 ∈ UniOp ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((π‘‡β€˜π΄) Β·ih (π‘‡β€˜π΅)) = (𝐴 Β·ih 𝐡))
 
Theoremunopf1o 31156 A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp β†’ 𝑇: ℋ–1-1-ontoβ†’ β„‹)
 
Theoremunopnorm 31157 A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ UniOp ∧ 𝐴 ∈ β„‹) β†’ (normβ„Žβ€˜(π‘‡β€˜π΄)) = (normβ„Žβ€˜π΄))
 
Theoremcnvunop 31158 The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp β†’ ◑𝑇 ∈ UniOp)
 
Theoremunopadj 31159 The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
((𝑇 ∈ UniOp ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((π‘‡β€˜π΄) Β·ih 𝐡) = (𝐴 Β·ih (β—‘π‘‡β€˜π΅)))
 
Theoremunoplin 31160 A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp β†’ 𝑇 ∈ LinOp)
 
Theoremcounop 31161 The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) β†’ (𝑆 ∘ 𝑇) ∈ UniOp)
 
Theoremhmop 31162 Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
((𝑇 ∈ HrmOp ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 Β·ih (π‘‡β€˜π΅)) = ((π‘‡β€˜π΄) Β·ih 𝐡))
 
Theoremhmopre 31163 The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
((𝑇 ∈ HrmOp ∧ 𝐴 ∈ β„‹) β†’ ((π‘‡β€˜π΄) Β·ih 𝐴) ∈ ℝ)
 
Theoremnmfnlb 31164 A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ (normfnβ€˜π‘‡))
 
Theoremnmfnleub 31165* An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.)
((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
 
Theoremnmfnleub2 31166* An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆβ„‚ ∧ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ βˆ€π‘₯ ∈ β„‹ (absβ€˜(π‘‡β€˜π‘₯)) ≀ (𝐴 Β· (normβ„Žβ€˜π‘₯))) β†’ (normfnβ€˜π‘‡) ≀ 𝐴)
 
Theoremnmfnge0 31167 The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ 0 ≀ (normfnβ€˜π‘‡))
 
Theoremelnlfn 31168 Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
(𝑇: β„‹βŸΆβ„‚ β†’ (𝐴 ∈ (nullβ€˜π‘‡) ↔ (𝐴 ∈ β„‹ ∧ (π‘‡β€˜π΄) = 0)))
 
Theoremelnlfn2 31169 Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ (nullβ€˜π‘‡)) β†’ (π‘‡β€˜π΄) = 0)
 
Theoremcnfnc 31170* Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
((𝑇 ∈ ContFn ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ ℝ+) β†’ βˆƒπ‘₯ ∈ ℝ+ βˆ€π‘¦ ∈ β„‹ ((normβ„Žβ€˜(𝑦 βˆ’β„Ž 𝐴)) < π‘₯ β†’ (absβ€˜((π‘‡β€˜π‘¦) βˆ’ (π‘‡β€˜π΄))) < 𝐡))
 
Theoremlnfnl 31171 Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
(((𝑇 ∈ LinFn ∧ 𝐴 ∈ β„‚) ∧ (𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹)) β†’ (π‘‡β€˜((𝐴 Β·β„Ž 𝐡) +β„Ž 𝐢)) = ((𝐴 Β· (π‘‡β€˜π΅)) + (π‘‡β€˜πΆ)))
 
Theoremadjcl 31172 Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
((𝑇 ∈ dom adjβ„Ž ∧ 𝐴 ∈ β„‹) β†’ ((adjβ„Žβ€˜π‘‡)β€˜π΄) ∈ β„‹)
 
Theoremadj1 31173 Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ dom adjβ„Ž ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 Β·ih (π‘‡β€˜π΅)) = (((adjβ„Žβ€˜π‘‡)β€˜π΄) Β·ih 𝐡))
 
Theoremadj2 31174 Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ dom adjβ„Ž ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((π‘‡β€˜π΄) Β·ih 𝐡) = (𝐴 Β·ih ((adjβ„Žβ€˜π‘‡)β€˜π΅)))
 
Theoremadjeq 31175* A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝑆: β„‹βŸΆ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ βˆ€π‘¦ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih 𝑦) = (π‘₯ Β·ih (π‘†β€˜π‘¦))) β†’ (adjβ„Žβ€˜π‘‡) = 𝑆)
 
Theoremadjadj 31176 Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž β†’ (adjβ„Žβ€˜(adjβ„Žβ€˜π‘‡)) = 𝑇)
 
Theoremadjvalval 31177* Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
((𝑇 ∈ dom adjβ„Ž ∧ 𝐴 ∈ β„‹) β†’ ((adjβ„Žβ€˜π‘‡)β€˜π΄) = (℩𝑀 ∈ β„‹ βˆ€π‘₯ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih 𝐴) = (π‘₯ Β·ih 𝑀)))
 
Theoremunopadj2 31178 The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp β†’ (adjβ„Žβ€˜π‘‡) = ◑𝑇)
 
Theoremhmopadj 31179 A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
(𝑇 ∈ HrmOp β†’ (adjβ„Žβ€˜π‘‡) = 𝑇)
 
Theoremhmdmadj 31180 Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
(𝑇 ∈ HrmOp β†’ 𝑇 ∈ dom adjβ„Ž)
 
Theoremhmopadj2 31181 An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ dom adjβ„Ž β†’ (𝑇 ∈ HrmOp ↔ (adjβ„Žβ€˜π‘‡) = 𝑇))
 
Theoremhmoplin 31182 A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
(𝑇 ∈ HrmOp β†’ 𝑇 ∈ LinOp)
 
Theorembrafval 31183* The bra of a vector, expressed as ⟨𝐴 ∣ in Dirac notation. See df-bra 31090. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
(𝐴 ∈ β„‹ β†’ (braβ€˜π΄) = (π‘₯ ∈ β„‹ ↦ (π‘₯ Β·ih 𝐴)))
 
Theorembraval 31184 A bra-ket juxtaposition, expressed as ⟨𝐴 ∣ 𝐡⟩ in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜π΅) = (𝐡 Β·ih 𝐴))
 
Theorembraadd 31185 Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜(𝐡 +β„Ž 𝐢)) = (((braβ€˜π΄)β€˜π΅) + ((braβ€˜π΄)β€˜πΆ)))
 
Theorembramul 31186 Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜(𝐡 Β·β„Ž 𝐢)) = (𝐡 Β· ((braβ€˜π΄)β€˜πΆ)))
 
Theorembrafn 31187 The bra function is a functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝐴 ∈ β„‹ β†’ (braβ€˜π΄): β„‹βŸΆβ„‚)
 
Theorembralnfn 31188 The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝐴 ∈ β„‹ β†’ (braβ€˜π΄) ∈ LinFn)
 
Theorembracl 31189 Closure of the bra function. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜π΅) ∈ β„‚)
 
Theorembra0 31190 The Dirac bra of the zero vector. (Contributed by NM, 25-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
(braβ€˜0β„Ž) = ( β„‹ Γ— {0})
 
Theorembrafnmul 31191 Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹) β†’ (braβ€˜(𝐴 Β·β„Ž 𝐡)) = ((βˆ—β€˜π΄) Β·fn (braβ€˜π΅)))
 
Theoremkbfval 31192* The outer product of two vectors, expressed as ∣ 𝐴⟩⟨𝐡 ∣ in Dirac notation. See df-kb 31091. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 ketbra 𝐡) = (π‘₯ ∈ β„‹ ↦ ((π‘₯ Β·ih 𝐡) Β·β„Ž 𝐴)))
 
Theoremkbop 31193 The outer product of two vectors, expressed as ∣ 𝐴⟩⟨𝐡 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴 ketbra 𝐡): β„‹βŸΆ β„‹)
 
Theoremkbval 31194 The value of the operator resulting from the outer product ∣ 𝐴⟩ ⟨𝐡 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 ketbra 𝐡)β€˜πΆ) = ((𝐢 Β·ih 𝐡) Β·β„Ž 𝐴))
 
Theoremkbmul 31195 Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ ((𝐴 Β·β„Ž 𝐡) ketbra 𝐢) = (𝐡 ketbra ((βˆ—β€˜π΄) Β·β„Ž 𝐢)))
 
Theoremkbpj 31196 If a vector 𝐴 has norm 1, the outer product ∣ 𝐴⟩⟨𝐴 ∣ is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
((𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) = 1) β†’ (𝐴 ketbra 𝐴) = (projβ„Žβ€˜(spanβ€˜{𝐴})))
 
Theoremeleigvec 31197* Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (𝐴 ∈ (eigvecβ€˜π‘‡) ↔ (𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž ∧ βˆƒπ‘₯ ∈ β„‚ (π‘‡β€˜π΄) = (π‘₯ Β·β„Ž 𝐴))))
 
Theoremeleigvec2 31198 Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.)
(𝑇: β„‹βŸΆ β„‹ β†’ (𝐴 ∈ (eigvecβ€˜π‘‡) ↔ (𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž ∧ (π‘‡β€˜π΄) ∈ (spanβ€˜{𝐴}))))
 
Theoremeleigveccl 31199 Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ 𝐴 ∈ β„‹)
 
Theoremeigvalval 31200 The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((eigvalβ€˜π‘‡)β€˜π΄) = (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47805
  Copyright terms: Public domain < Previous  Next >