| Metamath
Proof Explorer Theorem List (p. 312 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | normlem1 31101 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 22-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝑅 ∈ ℝ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) | ||
| Theorem | normlem2 31102 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ⇒ ⊢ 𝐵 ∈ ℝ | ||
| Theorem | normlem3 31103 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) | ||
| Theorem | normlem4 31104 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ 𝑅 ∈ ℝ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ ((𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺)) ·ih (𝐹 −ℎ ((𝑆 · 𝑅) ·ℎ 𝐺))) = (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) | ||
| Theorem | normlem5 31105 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ 𝑅 ∈ ℝ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ 0 ≤ (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) | ||
| Theorem | normlem6 31106 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) & ⊢ 𝐴 = (𝐺 ·ih 𝐺) & ⊢ 𝐶 = (𝐹 ·ih 𝐹) & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ (abs‘𝐵) ≤ (2 · ((√‘𝐴) · (√‘𝐶))) | ||
| Theorem | normlem7 31107 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ ℂ & ⊢ 𝐹 ∈ ℋ & ⊢ 𝐺 ∈ ℋ & ⊢ (abs‘𝑆) = 1 ⇒ ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) | ||
| Theorem | normlem8 31108 | Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐶 +ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) | ||
| Theorem | normlem9 31109 | Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) ·ih (𝐶 −ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) | ||
| Theorem | normlem7tALT 31110 | Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))) | ||
| Theorem | bcseqi 31111 | Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 31171. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) ·ℎ 𝐴) = ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) | ||
| Theorem | normlem9at 31112 | Lemma used to derive properties of norm. Part of Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) | ||
| Theorem | dfhnorm2 31113 | Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) | ||
| Theorem | normf 31114 | The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ normℎ: ℋ⟶ℝ | ||
| Theorem | normval 31115 | The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | ||
| Theorem | normcl 31116 | Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | ||
| Theorem | normge0 31117 | The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | ||
| Theorem | normgt0 31118 | The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) | ||
| Theorem | norm0 31119 | The norm of a zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ (normℎ‘0ℎ) = 0 | ||
| Theorem | norm-i 31120 | Theorem 3.3(i) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) = 0 ↔ 𝐴 = 0ℎ)) | ||
| Theorem | normne0 31121 | A norm is nonzero iff its argument is a nonzero vector. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0ℎ)) | ||
| Theorem | normcli 31122 | Real closure of the norm of a vector. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ (normℎ‘𝐴) ∈ ℝ | ||
| Theorem | normsqi 31123 | The square of a norm. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) | ||
| Theorem | norm-i-i 31124 | Theorem 3.3(i) of [Beran] p. 97. (Contributed by NM, 5-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ ⇒ ⊢ ((normℎ‘𝐴) = 0 ↔ 𝐴 = 0ℎ) | ||
| Theorem | normsq 31125 | The square of a norm. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴)) | ||
| Theorem | normsub0i 31126 | Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵) | ||
| Theorem | normsub0 31127 | Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘(𝐴 −ℎ 𝐵)) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | norm-ii-i 31128 | Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵)) | ||
| Theorem | norm-ii 31129 | Triangle inequality for norms. Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ≤ ((normℎ‘𝐴) + (normℎ‘𝐵))) | ||
| Theorem | norm-iii-i 31130 | Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵)) | ||
| Theorem | norm-iii 31131 | Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) | ||
| Theorem | normsubi 31132 | Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) | ||
| Theorem | normpythi 31133 | Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) | ||
| Theorem | normsub 31134 | Swapping order of subtraction doesn't change the norm of a vector. (Contributed by NM, 14-Aug-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴))) | ||
| Theorem | normneg 31135 | The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (normℎ‘(-1 ·ℎ 𝐴)) = (normℎ‘𝐴)) | ||
| Theorem | normpyth 31136 | Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | ||
| Theorem | normpyc 31137 | Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) | ||
| Theorem | norm3difi 31138 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) | ||
| Theorem | norm3adifii 31139 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) | ||
| Theorem | norm3lem 31140 | Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℝ ⇒ ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) | ||
| Theorem | norm3dif 31141 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) | ||
| Theorem | norm3dif2 31142 | Norm of differences around common element. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐶 −ℎ 𝐴)) + (normℎ‘(𝐶 −ℎ 𝐵)))) | ||
| Theorem | norm3lemt 31143 | Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷)) | ||
| Theorem | norm3adifi 31144 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 3-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | normpari 31145 | Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((normℎ‘(𝐴 −ℎ 𝐵))↑2) + ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 · ((normℎ‘𝐴)↑2)) + (2 · ((normℎ‘𝐵)↑2))) | ||
| Theorem | normpar 31146 | Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘(𝐴 −ℎ 𝐵))↑2) + ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 · ((normℎ‘𝐴)↑2)) + (2 · ((normℎ‘𝐵)↑2)))) | ||
| Theorem | normpar2i 31147 | Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((normℎ‘(𝐴 −ℎ 𝐵))↑2) = (((2 · ((normℎ‘(𝐴 −ℎ 𝐶))↑2)) + (2 · ((normℎ‘(𝐵 −ℎ 𝐶))↑2))) − ((normℎ‘((𝐴 +ℎ 𝐵) −ℎ (2 ·ℎ 𝐶)))↑2)) | ||
| Theorem | polid2i 31148 | Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ (𝐴 ·ih 𝐵) = (((((𝐴 +ℎ 𝐶) ·ih (𝐷 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐶) ·ih (𝐷 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐶)) ·ih (𝐷 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐶)) ·ih (𝐷 −ℎ (i ·ℎ 𝐵)))))) / 4) | ||
| Theorem | polidi 31149 | Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 31075. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) | ||
| Theorem | polid 31150 | Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 31075. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4)) | ||
| Theorem | hilablo 31151 | Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| ⊢ +ℎ ∈ AbelOp | ||
| Theorem | hilid 31152 | The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.) |
| ⊢ (GId‘ +ℎ ) = 0ℎ | ||
| Theorem | hilvc 31153 | Hilbert space is a complex vector space. Vector addition is +ℎ, and scalar product is ·ℎ. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | ||
| Theorem | hilnormi 31154 | Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
| Theorem | hilhhi 31155 | Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | ||
| Theorem | hhnv 31156 | Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
| Theorem | hhva 31157 | The group (addition) operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
| Theorem | hhba 31158 | The base set of Hilbert space. This theorem provides an independent proof of df-hba 30960 (see comments in that definition). (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ℋ = (BaseSet‘𝑈) | ||
| Theorem | hh0v 31159 | The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 0ℎ = (0vec‘𝑈) | ||
| Theorem | hhsm 31160 | The scalar product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | hhvs 31161 | The vector subtraction operation of Hilbert space. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
| Theorem | hhnm 31162 | The norm function of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
| Theorem | hhims 31163 | The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
| Theorem | hhims2 31164 | Hilbert space distance metric. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 = (normℎ ∘ −ℎ ) | ||
| Theorem | hhmet 31165 | The induced metric of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (Met‘ ℋ) | ||
| Theorem | hhxmet 31166 | The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (∞Met‘ ℋ) | ||
| Theorem | hhmetdval 31167 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | hhip 31168 | The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ·ih = (·𝑖OLD‘𝑈) | ||
| Theorem | hhph 31169 | The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ CPreHilOLD | ||
| Theorem | bcsiALT 31170 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵)) | ||
| Theorem | bcsiHIL 31171 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵)) | ||
| Theorem | bcs 31172 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) | ||
| Theorem | bcs2 31173 | Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 31171. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) | ||
| Theorem | bcs3 31174 | Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 31171. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐵) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐴)) | ||
| Theorem | hcau 31175* | Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) | ||
| Theorem | hcauseq 31176 | A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ Cauchy → 𝐹:ℕ⟶ ℋ) | ||
| Theorem | hcaucvg 31177* | A Cauchy sequence on a Hilbert space converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐹 ∈ Cauchy ∧ 𝐴 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝐴) | ||
| Theorem | seq1hcau 31178* | A sequence on a Hilbert space is a Cauchy sequence if it converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹:ℕ⟶ ℋ → (𝐹 ∈ Cauchy ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) | ||
| Theorem | hlimi 31179* | Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) | ||
| Theorem | hlimseqi 31180 | A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹:ℕ⟶ ℋ) | ||
| Theorem | hlimveci 31181 | Closure of the limit of a sequence on Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐴 ∈ ℋ) | ||
| Theorem | hlimconvi 31182* | Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐹 ⇝𝑣 𝐴 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝐵) | ||
| Theorem | hlim2 31183* | The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) | ||
| Theorem | hlimadd 31184* | Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) & ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) & ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) & ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) | ||
| Theorem | hilmet 31185 | The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (Met‘ ℋ) | ||
| Theorem | hilxmet 31186 | The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (∞Met‘ ℋ) | ||
| Theorem | hilmetdval 31187 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | hilims 31188 | Hilbert space distance metric. (Contributed by NM, 13-Sep-2007.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 = (normℎ ∘ −ℎ ) | ||
| Theorem | hhcau 31189 | The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
| Theorem | hhlm 31190 | The limit sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
| Theorem | hhcmpl 31191* | Lemma used for derivation of the completeness axiom ax-hcompl 31193 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | hilcompl 31192* | Lemma used for derivation of the completeness axiom ax-hcompl 31193 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 30990; the 6th would be satisfied by eqid 2733; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl 30906. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CHilOLD & ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
| Axiom | ax-hcompl 31193* | Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | hhcms 31194 | The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (CMet‘ ℋ) | ||
| Theorem | hhhl 31195 | The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
| Theorem | hilcms 31196 | The Hilbert space norm determines a complete metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (CMet‘ ℋ) | ||
| Theorem | hilhl 31197 | The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007.) (New usage is discouraged.) |
| ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CHilOLD | ||
| Definition | df-sh 31198 | Define the set of subspaces of a Hilbert space. See issh 31199 for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of [Beran] p. 95. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ Sℋ = {ℎ ∈ 𝒫 ℋ ∣ (0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ)} | ||
| Theorem | issh 31199 | Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | ||
| Theorem | issh2 31200* | Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |