Home | Metamath
Proof Explorer Theorem List (p. 312 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | xdivmul 31101 | Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴)) | ||
Theorem | rexdiv 31102 | The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵)) | ||
Theorem | xdivrec 31103 | Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵))) | ||
Theorem | xdivid 31104 | A number divided by itself is one. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 /𝑒 𝐴) = 1) | ||
Theorem | xdiv0 31105 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 /𝑒 𝐴) = 0) | ||
Theorem | xdiv0rp 31106 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0) | ||
Theorem | eliccioo 31107 | Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) | ||
Theorem | elxrge02 31108 | Elementhood in the set of nonnegative extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) | ||
Theorem | xdivpnfrp 31109 | Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) | ||
Theorem | rpxdivcld 31110 | Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ+) | ||
Theorem | xrpxdivcld 31111 | Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | wrdfd 31112 | A word is a zero-based sequence with a recoverable upper limit, deduction version. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ (𝜑 → 𝑁 = (♯‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → 𝑊:(0..^𝑁)⟶𝑆) | ||
Theorem | wrdres 31113 | Condition for the restriction of a word to be a word itself. (Contributed by Thierry Arnoux, 5-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ↾ (0..^𝑁)) ∈ Word 𝑆) | ||
Theorem | wrdsplex 31114* | Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) | ||
Theorem | pfx1s2 31115 | The prefix of length 1 of a length 2 word. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 prefix 1) = 〈“𝐴”〉) | ||
Theorem | pfxrn2 31116 | The range of a prefix of a word is a subset of the range of that word. Stronger version of pfxrn 14326. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) ⊆ ran 𝑊) | ||
Theorem | pfxrn3 31117 | Express the range of a prefix of a word. Stronger version of pfxrn2 31116. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) = (𝑊 “ (0..^𝐿))) | ||
Theorem | pfxf1 31118 | Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) & ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) | ||
Theorem | s1f1 31119 | Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) ⇒ ⊢ (𝜑 → 〈“𝐼”〉:dom 〈“𝐼”〉–1-1→𝐷) | ||
Theorem | s2rn 31120 | Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) ⇒ ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) | ||
Theorem | s2f1 31121 | Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) | ||
Theorem | s3rn 31122 | Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) ⇒ ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) | ||
Theorem | s3f1 31123 | Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) | ||
Theorem | s3clhash 31124 | Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023.) |
⊢ 〈“𝐼𝐽𝐾”〉 ∈ (◡♯ “ {3}) | ||
Theorem | ccatf1 31125 | Conditions for a concatenation to be injective. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐴:dom 𝐴–1-1→𝑆) & ⊢ (𝜑 → 𝐵:dom 𝐵–1-1→𝑆) & ⊢ (𝜑 → (ran 𝐴 ∩ ran 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1→𝑆) | ||
Theorem | pfxlsw2ccat 31126 | Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
⊢ 𝑁 = (♯‘𝑊) ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉)) | ||
Theorem | wrdt2ind 31127* | Perform an induction over the structure of a word of even length. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ++ 〈“𝑖𝑗”〉) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) → 𝜏) | ||
Theorem | swrdrn2 31128 | The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14293. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ ran 𝑊) | ||
Theorem | swrdrn3 31129 | Express the range of a subword. Stronger version of swrdrn2 31128. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | ||
Theorem | swrdf1 31130 | Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑊 substr 〈𝑀, 𝑁〉):dom (𝑊 substr 〈𝑀, 𝑁〉)–1-1→𝐷) | ||
Theorem | swrdrndisj 31131 | Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) & ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) & ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) | ||
Theorem | splfv3 31132 | Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) & ⊢ (𝜑 → 𝐾 = (𝐹 + (♯‘𝑅))) ⇒ ⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇))) | ||
Theorem | 1cshid 31133 | Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊) | ||
Theorem | cshw1s2 31134 | Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 cyclShift 1) = 〈“𝐵𝐴”〉) | ||
Theorem | cshwrnid 31135 | Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) | ||
Theorem | cshf1o 31136 | Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) | ||
Theorem | ressplusf 31137 | The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ ⨣ = (+g‘𝐺) & ⊢ ⨣ Fn (𝐵 × 𝐵) & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) | ||
Theorem | ressnm 31138 | The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) | ||
Theorem | abvpropd2 31139 | Weaker version of abvpropd 20017. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) & ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐿)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
Theorem | oppgle 31140 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ ≤ = (le‘𝑂) | ||
Theorem | oppgleOLD 31141 | Obsolete version of oppgle 31140 as of 27-Oct-2024. less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ ≤ = (le‘𝑂) | ||
Theorem | oppglt 31142 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ < = (lt‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → < = (lt‘𝑂)) | ||
Theorem | ressprs 31143 | The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) | ||
Theorem | oduprs 31144 | Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset ) | ||
Theorem | posrasymb 31145 | A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
Theorem | resspos 31146 | The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) | ||
Theorem | resstos 31147 | The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Toset) | ||
Theorem | odutos 31148 | Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) | ||
Theorem | tlt2 31149 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) | ||
Theorem | tlt3 31150 | In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) | ||
Theorem | trleile 31151 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
Theorem | toslublem 31152* | Lemma for toslub 31153 and xrsclat 31191. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) | ||
Theorem | toslub 31153 | In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) | ||
Theorem | tosglblem 31154* | Lemma for tosglb 31155 and xrsclat 31191. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) | ||
Theorem | tosglb 31155 | Same theorem as toslub 31153, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) | ||
Theorem | clatp0cl 31156 | The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) | ||
Theorem | clatp1cl 31157 | The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 1 = (1.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) | ||
Syntax | cmnt 31158 | Extend class notation with monotone functions. |
class Monot | ||
Syntax | cmgc 31159 | Extend class notation with the monotone Galois connection. |
class MGalConn | ||
Definition | df-mnt 31160* | Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) | ||
Definition | df-mgc 31161* | Define monotone Galois connections. See mgcval 31167 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | ||
Theorem | mntoval 31162* | Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | ||
Theorem | ismnt 31163* | Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) | ||
Theorem | ismntd 31164 | Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
Theorem | mntf 31165 | A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) | ||
Theorem | mgcoval 31166* | Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | ||
Theorem | mgcval 31167* |
Monotone Galois connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) | ||
Theorem | mgcf1 31168 | The lower adjoint 𝐹 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
Theorem | mgcf2 31169 | The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
Theorem | mgccole1 31170 | An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) | ||
Theorem | mgccole2 31171 | Inequality for the closure operator (𝐹 ∘ 𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) | ||
Theorem | mgcmnt1 31172 | The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
Theorem | mgcmnt2 31173 | The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≲ 𝑌) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≤ (𝐺‘𝑌)) | ||
Theorem | mgcmntco 31174* | A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ < = (le‘𝑋) & ⊢ (𝜑 → 𝑋 ∈ Proset ) & ⊢ (𝜑 → 𝐾 ∈ (𝑉Monot𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑊Monot𝑋)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦))) | ||
Theorem | dfmgc2lem 31175* | Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) & ⊢ (𝜑 → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ⇒ ⊢ (𝜑 → 𝐹𝐻𝐺) | ||
Theorem | dfmgc2 31176* | Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) | ||
Theorem | mgcmnt1d 31177 | Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | ||
Theorem | mgcmnt2d 31178 | Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) | ||
Theorem | mgccnv 31179 | The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) ⇒ ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) | ||
Theorem | pwrssmgc 31180* | Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
⊢ 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (◡𝐹 “ 𝑛)) & ⊢ 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚}) & ⊢ 𝑉 = (toInc‘𝒫 𝑌) & ⊢ 𝑊 = (toInc‘𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → 𝐺(𝑉MGalConn𝑊)𝐻) | ||
Theorem | mgcf1olem1 31181 | Property of a Galois connection, lemma for mgcf1o 31183. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) | ||
Theorem | mgcf1olem2 31182 | Property of a Galois connection, lemma for mgcf1o 31183. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) | ||
Theorem | mgcf1o 31183 | Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹)) | ||
Axiom | ax-xrssca 31184 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ℝfld = (Scalar‘ℝ*𝑠) | ||
Axiom | ax-xrsvsca 31185 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ ·e = ( ·𝑠 ‘ℝ*𝑠) | ||
Theorem | xrs0 31186 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 12912 and df-xrs 17130), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ 0 = (0g‘ℝ*𝑠) | ||
Theorem | xrslt 31187 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ < = (lt‘ℝ*𝑠) | ||
Theorem | xrsinvgval 31188 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 12912 and df-xrs 17130), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) | ||
Theorem | xrsmulgzz 31189 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | ||
Theorem | xrstos 31190 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
⊢ ℝ*𝑠 ∈ Toset | ||
Theorem | xrsclat 31191 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
⊢ ℝ*𝑠 ∈ CLat | ||
Theorem | xrsp0 31192 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ -∞ = (0.‘ℝ*𝑠) | ||
Theorem | xrsp1 31193 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
⊢ +∞ = (1.‘ℝ*𝑠) | ||
Theorem | ressmulgnn 31194 | Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐴 ⊆ (Base‘𝐺) & ⊢ ∗ = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) | ||
Theorem | ressmulgnn0 31195 | Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐴 ⊆ (Base‘𝐺) & ⊢ ∗ = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (0g‘𝐺) = (0g‘𝐻) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) | ||
Theorem | xrge0base 31196 | The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
Theorem | xrge00 31197 | The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
Theorem | xrge0plusg 31198 | The additive law of the extended nonnegative real numbers monoid is the addition in the extended real numbers. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
Theorem | xrge0le 31199 | The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018.) |
⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
Theorem | xrge0mulgnn0 31200 | The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |