| Metamath
Proof Explorer Theorem List (p. 312 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hhnv 31101 | Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
| Theorem | hhva 31102 | The group (addition) operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
| Theorem | hhba 31103 | The base set of Hilbert space. This theorem provides an independent proof of df-hba 30905 (see comments in that definition). (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ℋ = (BaseSet‘𝑈) | ||
| Theorem | hh0v 31104 | The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 0ℎ = (0vec‘𝑈) | ||
| Theorem | hhsm 31105 | The scalar product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
| Theorem | hhvs 31106 | The vector subtraction operation of Hilbert space. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
| Theorem | hhnm 31107 | The norm function of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
| Theorem | hhims 31108 | The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
| Theorem | hhims2 31109 | Hilbert space distance metric. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 = (normℎ ∘ −ℎ ) | ||
| Theorem | hhmet 31110 | The induced metric of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (Met‘ ℋ) | ||
| Theorem | hhxmet 31111 | The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (∞Met‘ ℋ) | ||
| Theorem | hhmetdval 31112 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | hhip 31113 | The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ·ih = (·𝑖OLD‘𝑈) | ||
| Theorem | hhph 31114 | The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ CPreHilOLD | ||
| Theorem | bcsiALT 31115 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵)) | ||
| Theorem | bcsiHIL 31116 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵)) | ||
| Theorem | bcs 31117 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) | ||
| Theorem | bcs2 31118 | Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 31116. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) | ||
| Theorem | bcs3 31119 | Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 31116. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐵) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐴)) | ||
| Theorem | hcau 31120* | Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) | ||
| Theorem | hcauseq 31121 | A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ Cauchy → 𝐹:ℕ⟶ ℋ) | ||
| Theorem | hcaucvg 31122* | A Cauchy sequence on a Hilbert space converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐹 ∈ Cauchy ∧ 𝐴 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝐴) | ||
| Theorem | seq1hcau 31123* | A sequence on a Hilbert space is a Cauchy sequence if it converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹:ℕ⟶ ℋ → (𝐹 ∈ Cauchy ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) | ||
| Theorem | hlimi 31124* | Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) | ||
| Theorem | hlimseqi 31125 | A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹:ℕ⟶ ℋ) | ||
| Theorem | hlimveci 31126 | Closure of the limit of a sequence on Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐴 ∈ ℋ) | ||
| Theorem | hlimconvi 31127* | Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐹 ⇝𝑣 𝐴 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝐵) | ||
| Theorem | hlim2 31128* | The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) | ||
| Theorem | hlimadd 31129* | Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) & ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) & ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) & ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) | ||
| Theorem | hilmet 31130 | The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (Met‘ ℋ) | ||
| Theorem | hilxmet 31131 | The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (∞Met‘ ℋ) | ||
| Theorem | hilmetdval 31132 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
| Theorem | hilims 31133 | Hilbert space distance metric. (Contributed by NM, 13-Sep-2007.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 = (normℎ ∘ −ℎ ) | ||
| Theorem | hhcau 31134 | The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
| Theorem | hhlm 31135 | The limit sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
| Theorem | hhcmpl 31136* | Lemma used for derivation of the completeness axiom ax-hcompl 31138 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | hilcompl 31137* | Lemma used for derivation of the completeness axiom ax-hcompl 31138 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 30935; the 6th would be satisfied by eqid 2730; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl 30851. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CHilOLD & ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
| Axiom | ax-hcompl 31138* | Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | hhcms 31139 | The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (CMet‘ ℋ) | ||
| Theorem | hhhl 31140 | The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
| Theorem | hilcms 31141 | The Hilbert space norm determines a complete metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (CMet‘ ℋ) | ||
| Theorem | hilhl 31142 | The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007.) (New usage is discouraged.) |
| ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CHilOLD | ||
| Definition | df-sh 31143 | Define the set of subspaces of a Hilbert space. See issh 31144 for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of [Beran] p. 95. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ Sℋ = {ℎ ∈ 𝒫 ℋ ∣ (0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ)} | ||
| Theorem | issh 31144 | Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | ||
| Theorem | issh2 31145* | Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | ||
| Theorem | shss 31146 | A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | ||
| Theorem | shel 31147 | A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | ||
| Theorem | shex 31148 | The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ Sℋ ∈ V | ||
| Theorem | shssii 31149 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐻 ⊆ ℋ | ||
| Theorem | sheli 31150 | A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) | ||
| Theorem | shelii 31151 | A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ & ⊢ 𝐴 ∈ 𝐻 ⇒ ⊢ 𝐴 ∈ ℋ | ||
| Theorem | sh0 31152 | The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) | ||
| Theorem | shaddcl 31153 | Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) | ||
| Theorem | shmulcl 31154 | Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) | ||
| Theorem | issh3 31155* | Subspace 𝐻 of a Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ⊆ ℋ → (𝐻 ∈ Sℋ ↔ (0ℎ ∈ 𝐻 ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)))) | ||
| Theorem | shsubcl 31156 | Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | ||
| Definition | df-ch 31157 | Define the set of closed subspaces of a Hilbert space. A closed subspace is one in which the limit of every convergent sequence in the subspace belongs to the subspace. For its membership relation, see isch 31158. From Definition of [Beran] p. 107. Alternate definitions are given by isch2 31159 and isch3 31177. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
| ⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} | ||
| Theorem | isch 31158 | Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | ||
| Theorem | isch2 31159* | Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | ||
| Theorem | chsh 31160 | A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | ||
| Theorem | chsssh 31161 | Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ Cℋ ⊆ Sℋ | ||
| Theorem | chex 31162 | The set of closed subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ Cℋ ∈ V | ||
| Theorem | chshii 31163 | A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐻 ∈ Sℋ | ||
| Theorem | ch0 31164 | The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) | ||
| Theorem | chss 31165 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) | ||
| Theorem | chel 31166 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | ||
| Theorem | chssii 31167 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐻 ⊆ ℋ | ||
| Theorem | cheli 31168 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) | ||
| Theorem | chelii 31169 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ 𝐻 ⇒ ⊢ 𝐴 ∈ ℋ | ||
| Theorem | chlimi 31170 | The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) | ||
| Theorem | hlim0 31171 | The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | ||
| Theorem | hlimcaui 31172 | If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) | ||
| Theorem | hlimf 31173 | Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | ||
| Theorem | hlimuni 31174 | A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 2-May-2015.) (New usage is discouraged.) |
| ⊢ ((𝐹 ⇝𝑣 𝐴 ∧ 𝐹 ⇝𝑣 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | hlimreui 31175* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | hlimeui 31176* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (∃𝑥 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | isch3 31177* | A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥))) | ||
| Theorem | chcompl 31178* | Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999.) (New usage is discouraged.) |
| ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹:ℕ⟶𝐻) → ∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
| Theorem | helch 31179 | The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
| ⊢ ℋ ∈ Cℋ | ||
| Theorem | ifchhv 31180 | Prove if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ. (Contributed by David A. Wheeler, 8-Dec-2018.) (New usage is discouraged.) |
| ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | ||
| Theorem | helsh 31181 | Hilbert space is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ ℋ ∈ Sℋ | ||
| Theorem | shsspwh 31182 | Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ Sℋ ⊆ 𝒫 ℋ | ||
| Theorem | chsspwh 31183 | Closed subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ Cℋ ⊆ 𝒫 ℋ | ||
| Theorem | hsn0elch 31184 | The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| ⊢ {0ℎ} ∈ Cℋ | ||
| Theorem | norm1 31185 | From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (normℎ‘((1 / (normℎ‘𝐴)) ·ℎ 𝐴)) = 1) | ||
| Theorem | norm1exi 31186* | A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ 𝐻 (normℎ‘𝑦) = 1) | ||
| Theorem | norm1hex 31187 | A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ ℋ 𝑥 ≠ 0ℎ ↔ ∃𝑦 ∈ ℋ (normℎ‘𝑦) = 1) | ||
| Definition | df-oc 31188* | Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 31216 and chocvali 31235 for its value. Textbooks usually denote this unary operation with the symbol ⊥ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation) ⊥ rather than introducing a new syntactic form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) | ||
| Definition | df-ch0 31189 | Define the zero for closed subspaces of Hilbert space. See h0elch 31191 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℋ = {0ℎ} | ||
| Theorem | elch0 31190 | Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | ||
| Theorem | h0elch 31191 | The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| ⊢ 0ℋ ∈ Cℋ | ||
| Theorem | h0elsh 31192 | The zero subspace is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| ⊢ 0ℋ ∈ Sℋ | ||
| Theorem | hhssva 31193 | The vector addition operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) | ||
| Theorem | hhsssm 31194 | The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) | ||
| Theorem | hhssnm 31195 | The norm operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 ⇒ ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) | ||
| Theorem | issubgoilem 31196* | Lemma for hhssabloilem 31197. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
| ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐻𝑦) = (𝑥𝐺𝑦)) ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴𝐻𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | hhssabloilem 31197 | Lemma for hhssabloi 31198. Formerly part of proof for hhssabloi 31198 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ) | ||
| Theorem | hhssabloi 31198 | Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.) |
| ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp | ||
| Theorem | hhssablo 31199 | Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
| ⊢ (𝐻 ∈ Sℋ → ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp) | ||
| Theorem | hhssnv 31200 | Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.) |
| ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 & ⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝑊 ∈ NrmCVec | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |