Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > 3oalem3 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
Ref | Expression |
---|---|
3oalem3 | ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem1.1 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
2 | 3oalem1.3 | . . . . . . 7 ⊢ 𝑅 ∈ Cℋ | |
3 | 1, 2 | chseli 29849 | . . . . . 6 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦)) |
4 | r2ex 3186 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) |
6 | 3oalem1.2 | . . . . . . 7 ⊢ 𝐶 ∈ Cℋ | |
7 | 3oalem1.4 | . . . . . . 7 ⊢ 𝑆 ∈ Cℋ | |
8 | 6, 7 | chseli 29849 | . . . . . 6 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤)) |
9 | r2ex 3186 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) | |
10 | 8, 9 | bitri 274 | . . . . 5 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) |
11 | 5, 10 | anbi12i 626 | . . . 4 ⊢ ((𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆)) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
12 | elin 3905 | . . . 4 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ (𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆))) | |
13 | 4exdistrv 1956 | . . . 4 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) | |
14 | 11, 12, 13 | 3bitr4i 302 | . . 3 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ ∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
15 | 1, 6, 2, 7 | 3oalem2 30053 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
16 | 15 | exlimivv 1931 | . . . 4 ⊢ (∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
17 | 16 | exlimivv 1931 | . . 3 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
18 | 14, 17 | sylbi 216 | . 2 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
19 | 18 | ssriv 3927 | 1 ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2101 ∃wrex 3068 ∩ cin 3888 ⊆ wss 3889 (class class class)co 7295 +ℎ cva 29310 Cℋ cch 29319 +ℋ cph 29321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-hilex 29389 ax-hfvadd 29390 ax-hvcom 29391 ax-hvass 29392 ax-hv0cl 29393 ax-hvaddid 29394 ax-hfvmul 29395 ax-hvmulid 29396 ax-hvdistr1 29398 ax-hvdistr2 29399 ax-hvmul0 29400 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-ltxr 11042 df-sub 11235 df-neg 11236 df-nn 12002 df-grpo 28883 df-ablo 28935 df-hvsub 29361 df-hlim 29362 df-sh 29597 df-ch 29611 df-shs 29698 |
This theorem is referenced by: 3oai 30058 |
Copyright terms: Public domain | W3C validator |