| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
| 3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
| 3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
| 3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
| Ref | Expression |
|---|---|
| 3oalem3 | ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oalem1.1 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 3oalem1.3 | . . . . . . 7 ⊢ 𝑅 ∈ Cℋ | |
| 3 | 1, 2 | chseli 31445 | . . . . . 6 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦)) |
| 4 | r2ex 3182 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) |
| 6 | 3oalem1.2 | . . . . . . 7 ⊢ 𝐶 ∈ Cℋ | |
| 7 | 3oalem1.4 | . . . . . . 7 ⊢ 𝑆 ∈ Cℋ | |
| 8 | 6, 7 | chseli 31445 | . . . . . 6 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤)) |
| 9 | r2ex 3182 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) | |
| 10 | 8, 9 | bitri 275 | . . . . 5 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) |
| 11 | 5, 10 | anbi12i 628 | . . . 4 ⊢ ((𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆)) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
| 12 | elin 3947 | . . . 4 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ (𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆))) | |
| 13 | 4exdistrv 1956 | . . . 4 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . . 3 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ ∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
| 15 | 1, 6, 2, 7 | 3oalem2 31649 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 16 | 15 | exlimivv 1932 | . . . 4 ⊢ (∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 17 | 16 | exlimivv 1932 | . . 3 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 18 | 14, 17 | sylbi 217 | . 2 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 19 | 18 | ssriv 3967 | 1 ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 ∩ cin 3930 ⊆ wss 3931 (class class class)co 7410 +ℎ cva 30906 Cℋ cch 30915 +ℋ cph 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-nn 12246 df-grpo 30479 df-ablo 30531 df-hvsub 30957 df-hlim 30958 df-sh 31193 df-ch 31207 df-shs 31294 |
| This theorem is referenced by: 3oai 31654 |
| Copyright terms: Public domain | W3C validator |