| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
| 3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
| 3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
| 3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
| Ref | Expression |
|---|---|
| 3oalem3 | ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oalem1.1 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 3oalem1.3 | . . . . . . 7 ⊢ 𝑅 ∈ Cℋ | |
| 3 | 1, 2 | chseli 31438 | . . . . . 6 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦)) |
| 4 | r2ex 3172 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) |
| 6 | 3oalem1.2 | . . . . . . 7 ⊢ 𝐶 ∈ Cℋ | |
| 7 | 3oalem1.4 | . . . . . . 7 ⊢ 𝑆 ∈ Cℋ | |
| 8 | 6, 7 | chseli 31438 | . . . . . 6 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤)) |
| 9 | r2ex 3172 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) | |
| 10 | 8, 9 | bitri 275 | . . . . 5 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) |
| 11 | 5, 10 | anbi12i 628 | . . . 4 ⊢ ((𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆)) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
| 12 | elin 3927 | . . . 4 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ (𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆))) | |
| 13 | 4exdistrv 1956 | . . . 4 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . . 3 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ ∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
| 15 | 1, 6, 2, 7 | 3oalem2 31642 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 16 | 15 | exlimivv 1932 | . . . 4 ⊢ (∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 17 | 16 | exlimivv 1932 | . . 3 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 18 | 14, 17 | sylbi 217 | . 2 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 19 | 18 | ssriv 3947 | 1 ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 (class class class)co 7369 +ℎ cva 30899 Cℋ cch 30908 +ℋ cph 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvdistr1 30987 ax-hvdistr2 30988 ax-hvmul0 30989 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-nn 12163 df-grpo 30472 df-ablo 30524 df-hvsub 30950 df-hlim 30951 df-sh 31186 df-ch 31200 df-shs 31287 |
| This theorem is referenced by: 3oai 31647 |
| Copyright terms: Public domain | W3C validator |