| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
| 3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
| 3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
| 3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
| Ref | Expression |
|---|---|
| 3oalem3 | ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oalem1.1 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 3oalem1.3 | . . . . . . 7 ⊢ 𝑅 ∈ Cℋ | |
| 3 | 1, 2 | chseli 31395 | . . . . . 6 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦)) |
| 4 | r2ex 3175 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) |
| 6 | 3oalem1.2 | . . . . . . 7 ⊢ 𝐶 ∈ Cℋ | |
| 7 | 3oalem1.4 | . . . . . . 7 ⊢ 𝑆 ∈ Cℋ | |
| 8 | 6, 7 | chseli 31395 | . . . . . 6 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤)) |
| 9 | r2ex 3175 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) | |
| 10 | 8, 9 | bitri 275 | . . . . 5 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) |
| 11 | 5, 10 | anbi12i 628 | . . . 4 ⊢ ((𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆)) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
| 12 | elin 3933 | . . . 4 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ (𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆))) | |
| 13 | 4exdistrv 1956 | . . . 4 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . . 3 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ ∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
| 15 | 1, 6, 2, 7 | 3oalem2 31599 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 16 | 15 | exlimivv 1932 | . . . 4 ⊢ (∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 17 | 16 | exlimivv 1932 | . . 3 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 18 | 14, 17 | sylbi 217 | . 2 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
| 19 | 18 | ssriv 3953 | 1 ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 ∩ cin 3916 ⊆ wss 3917 (class class class)co 7390 +ℎ cva 30856 Cℋ cch 30865 +ℋ cph 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-nn 12194 df-grpo 30429 df-ablo 30481 df-hvsub 30907 df-hlim 30908 df-sh 31143 df-ch 31157 df-shs 31244 |
| This theorem is referenced by: 3oai 31604 |
| Copyright terms: Public domain | W3C validator |