HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem3 Structured version   Visualization version   GIF version

Theorem 3oalem3 30054
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem3 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))

Proof of Theorem 3oalem3
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3oalem1.1 . . . . . . 7 𝐵C
2 3oalem1.3 . . . . . . 7 𝑅C
31, 2chseli 29849 . . . . . 6 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦))
4 r2ex 3186 . . . . . 6 (∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
53, 4bitri 274 . . . . 5 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
6 3oalem1.2 . . . . . . 7 𝐶C
7 3oalem1.4 . . . . . . 7 𝑆C
86, 7chseli 29849 . . . . . 6 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤))
9 r2ex 3186 . . . . . 6 (∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
108, 9bitri 274 . . . . 5 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
115, 10anbi12i 626 . . . 4 ((𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
12 elin 3905 . . . 4 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ (𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)))
13 4exdistrv 1956 . . . 4 (∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
1411, 12, 133bitr4i 302 . . 3 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ ∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
151, 6, 2, 73oalem2 30053 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1615exlimivv 1931 . . . 4 (∃𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1716exlimivv 1931 . . 3 (∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1814, 17sylbi 216 . 2 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1918ssriv 3927 1 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2101  wrex 3068  cin 3888  wss 3889  (class class class)co 7295   + cva 29310   C cch 29319   + cph 29321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-hilex 29389  ax-hfvadd 29390  ax-hvcom 29391  ax-hvass 29392  ax-hv0cl 29393  ax-hvaddid 29394  ax-hfvmul 29395  ax-hvmulid 29396  ax-hvdistr1 29398  ax-hvdistr2 29399  ax-hvmul0 29400
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-ltxr 11042  df-sub 11235  df-neg 11236  df-nn 12002  df-grpo 28883  df-ablo 28935  df-hvsub 29361  df-hlim 29362  df-sh 29597  df-ch 29611  df-shs 29698
This theorem is referenced by:  3oai  30058
  Copyright terms: Public domain W3C validator