HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem3 Structured version   Visualization version   GIF version

Theorem 3oalem3 31650
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem3 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))

Proof of Theorem 3oalem3
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3oalem1.1 . . . . . . 7 𝐵C
2 3oalem1.3 . . . . . . 7 𝑅C
31, 2chseli 31445 . . . . . 6 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦))
4 r2ex 3182 . . . . . 6 (∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
53, 4bitri 275 . . . . 5 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
6 3oalem1.2 . . . . . . 7 𝐶C
7 3oalem1.4 . . . . . . 7 𝑆C
86, 7chseli 31445 . . . . . 6 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤))
9 r2ex 3182 . . . . . 6 (∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
108, 9bitri 275 . . . . 5 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
115, 10anbi12i 628 . . . 4 ((𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
12 elin 3947 . . . 4 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ (𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)))
13 4exdistrv 1956 . . . 4 (∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
1411, 12, 133bitr4i 303 . . 3 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ ∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
151, 6, 2, 73oalem2 31649 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1615exlimivv 1932 . . . 4 (∃𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1716exlimivv 1932 . . 3 (∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1814, 17sylbi 217 . 2 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1918ssriv 3967 1 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3061  cin 3930  wss 3931  (class class class)co 7410   + cva 30906   C cch 30915   + cph 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-neg 11474  df-nn 12246  df-grpo 30479  df-ablo 30531  df-hvsub 30957  df-hlim 30958  df-sh 31193  df-ch 31207  df-shs 31294
This theorem is referenced by:  3oai  31654
  Copyright terms: Public domain W3C validator