Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > 3oalem3 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
Ref | Expression |
---|---|
3oalem3 | ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem1.1 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
2 | 3oalem1.3 | . . . . . . 7 ⊢ 𝑅 ∈ Cℋ | |
3 | 1, 2 | chseli 29722 | . . . . . 6 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦)) |
4 | r2ex 3231 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑅 𝑣 = (𝑥 +ℎ 𝑦) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ (𝑣 ∈ (𝐵 +ℋ 𝑅) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦))) |
6 | 3oalem1.2 | . . . . . . 7 ⊢ 𝐶 ∈ Cℋ | |
7 | 3oalem1.4 | . . . . . . 7 ⊢ 𝑆 ∈ Cℋ | |
8 | 6, 7 | chseli 29722 | . . . . . 6 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤)) |
9 | r2ex 3231 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝑆 𝑣 = (𝑧 +ℎ 𝑤) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) | |
10 | 8, 9 | bitri 274 | . . . . 5 ⊢ (𝑣 ∈ (𝐶 +ℋ 𝑆) ↔ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) |
11 | 5, 10 | anbi12i 626 | . . . 4 ⊢ ((𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆)) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
12 | elin 3899 | . . . 4 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ (𝑣 ∈ (𝐵 +ℋ 𝑅) ∧ 𝑣 ∈ (𝐶 +ℋ 𝑆))) | |
13 | 4exdistrv 1961 | . . . 4 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ∃𝑧∃𝑤((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) | |
14 | 11, 12, 13 | 3bitr4i 302 | . . 3 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ↔ ∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)))) |
15 | 1, 6, 2, 7 | 3oalem2 29926 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
16 | 15 | exlimivv 1936 | . . . 4 ⊢ (∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
17 | 16 | exlimivv 1936 | . . 3 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
18 | 14, 17 | sylbi 216 | . 2 ⊢ (𝑣 ∈ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) → 𝑣 ∈ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆)))))) |
19 | 18 | ssriv 3921 | 1 ⊢ ((𝐵 +ℋ 𝑅) ∩ (𝐶 +ℋ 𝑆)) ⊆ (𝐵 +ℋ (𝑅 ∩ (𝑆 +ℋ ((𝐵 +ℋ 𝐶) ∩ (𝑅 +ℋ 𝑆))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 (class class class)co 7255 +ℎ cva 29183 Cℋ cch 29192 +ℋ cph 29194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-nn 11904 df-grpo 28756 df-ablo 28808 df-hvsub 29234 df-hlim 29235 df-sh 29470 df-ch 29484 df-shs 29571 |
This theorem is referenced by: 3oai 29931 |
Copyright terms: Public domain | W3C validator |