HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem3 Structured version   Visualization version   GIF version

Theorem 3oalem3 31185
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem3 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))

Proof of Theorem 3oalem3
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3oalem1.1 . . . . . . 7 𝐵C
2 3oalem1.3 . . . . . . 7 𝑅C
31, 2chseli 30980 . . . . . 6 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦))
4 r2ex 3194 . . . . . 6 (∃𝑥𝐵𝑦𝑅 𝑣 = (𝑥 + 𝑦) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
53, 4bitri 275 . . . . 5 (𝑣 ∈ (𝐵 + 𝑅) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)))
6 3oalem1.2 . . . . . . 7 𝐶C
7 3oalem1.4 . . . . . . 7 𝑆C
86, 7chseli 30980 . . . . . 6 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤))
9 r2ex 3194 . . . . . 6 (∃𝑧𝐶𝑤𝑆 𝑣 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
108, 9bitri 275 . . . . 5 (𝑣 ∈ (𝐶 + 𝑆) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)))
115, 10anbi12i 626 . . . 4 ((𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
12 elin 3964 . . . 4 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ (𝑣 ∈ (𝐵 + 𝑅) ∧ 𝑣 ∈ (𝐶 + 𝑆)))
13 4exdistrv 1959 . . . 4 (∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) ↔ (∃𝑥𝑦((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
1411, 12, 133bitr4i 303 . . 3 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ↔ ∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))))
151, 6, 2, 73oalem2 31184 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1615exlimivv 1934 . . . 4 (∃𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1716exlimivv 1934 . . 3 (∃𝑥𝑧𝑦𝑤(((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1814, 17sylbi 216 . 2 (𝑣 ∈ ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
1918ssriv 3986 1 ((𝐵 + 𝑅) ∩ (𝐶 + 𝑆)) ⊆ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1780  wcel 2105  wrex 3069  cin 3947  wss 3948  (class class class)co 7412   + cva 30441   C cch 30450   + cph 30452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-hilex 30520  ax-hfvadd 30521  ax-hvcom 30522  ax-hvass 30523  ax-hv0cl 30524  ax-hvaddid 30525  ax-hfvmul 30526  ax-hvmulid 30527  ax-hvdistr1 30529  ax-hvdistr2 30530  ax-hvmul0 30531
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-sub 11451  df-neg 11452  df-nn 12218  df-grpo 30014  df-ablo 30066  df-hvsub 30492  df-hlim 30493  df-sh 30728  df-ch 30742  df-shs 30829
This theorem is referenced by:  3oai  31189
  Copyright terms: Public domain W3C validator