Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orcoma | Structured version Visualization version GIF version |
Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
3orcoma | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or12 917 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
2 | 3orass 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 3orass 1088 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: 3orcomb 1092 outpasch 27020 eliccioo 31107 nogt01o 33826 |
Copyright terms: Public domain | W3C validator |