| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orcoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| 3orcoma | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or12 920 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 3orass 1089 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orcomb 1093 3orel2 1486 nogt01o 27665 elzs2 28344 outpasch 28739 eliccioo 32910 usgrexmpl2nb0 48015 |
| Copyright terms: Public domain | W3C validator |