MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nogt01o Structured version   Visualization version   GIF version

Theorem nogt01o 27608
Description: Given 𝐴 greater than 𝐵, equal to 𝐵 up to 𝑋, and 𝐵(𝑋) undefined, then 𝐴(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
nogt01o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 1o)

Proof of Theorem nogt01o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltso 27588 . . . 4 <s Or No
2 simp11 1204 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
3 sonr 5570 . . . 4 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
41, 2, 3sylancr 587 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
5 simpl2r 1228 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
6 simpl2l 1227 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
7 simpl11 1249 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
8 nofun 27561 . . . . . . . 8 (𝐴 No → Fun 𝐴)
9 funrel 6533 . . . . . . . 8 (Fun 𝐴 → Rel 𝐴)
108, 9syl 17 . . . . . . 7 (𝐴 No → Rel 𝐴)
117, 10syl 17 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → Rel 𝐴)
12 simpl13 1251 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝑋 ∈ On)
13 simpr 484 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = ∅)
14 nolt02olem 27606 . . . . . . 7 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
157, 12, 13, 14syl3anc 1373 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
16 relssres 5993 . . . . . 6 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
1711, 15, 16syl2anc 584 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = 𝐴)
18 simpl12 1250 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
19 nofun 27561 . . . . . . . 8 (𝐵 No → Fun 𝐵)
20 funrel 6533 . . . . . . . 8 (Fun 𝐵 → Rel 𝐵)
2119, 20syl 17 . . . . . . 7 (𝐵 No → Rel 𝐵)
2218, 21syl 17 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → Rel 𝐵)
23 simpl3 1194 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = ∅)
24 nolt02olem 27606 . . . . . . 7 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2518, 12, 23, 24syl3anc 1373 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → dom 𝐵𝑋)
26 relssres 5993 . . . . . 6 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2722, 25, 26syl2anc 584 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 𝐵)
286, 17, 273eqtr3d 2772 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 = 𝐵)
295, 28breqtrrd 5135 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐴)
304, 29mtand 815 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ (𝐴𝑋) = ∅)
31 simp2r 1201 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐴 <s 𝐵)
32 simp12 1205 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
33 sltval 27559 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
342, 32, 33syl2anc 584 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
3531, 34mpbid 232 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 ralinexa 3083 . . . . 5 (∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736con2bii 357 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3835, 37sylib 218 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
39 1n0 8452 . . . . . . . . . . . 12 1o ≠ ∅
4039neii 2927 . . . . . . . . . . 11 ¬ 1o = ∅
41 eqtr2 2750 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → 1o = ∅)
4240, 41mto 197 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
43 df-2o 8435 . . . . . . . . . . . . 13 2o = suc 1o
44 2on 8447 . . . . . . . . . . . . . . . 16 2o ∈ On
4543, 44eqeltrri 2825 . . . . . . . . . . . . . . 15 suc 1o ∈ On
4645onordi 6445 . . . . . . . . . . . . . 14 Ord suc 1o
47 1oex 8444 . . . . . . . . . . . . . . 15 1o ∈ V
4847sucid 6416 . . . . . . . . . . . . . 14 1o ∈ suc 1o
49 nordeq 6351 . . . . . . . . . . . . . 14 ((Ord suc 1o ∧ 1o ∈ suc 1o) → suc 1o ≠ 1o)
5046, 48, 49mp2an 692 . . . . . . . . . . . . 13 suc 1o ≠ 1o
5143, 50eqnetri 2995 . . . . . . . . . . . 12 2o ≠ 1o
5251nesymi 2982 . . . . . . . . . . 11 ¬ 1o = 2o
53 eqtr2 2750 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
5452, 53mto 197 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
55 2on0 8448 . . . . . . . . . . . 12 2o ≠ ∅
5655nesymi 2982 . . . . . . . . . . 11 ¬ ∅ = 2o
57 eqtr2 2750 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
5856, 57mto 197 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
5942, 54, 583pm3.2i 1340 . . . . . . . . 9 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
60 fvex 6871 . . . . . . . . . . . 12 ((𝐴𝑋)‘𝑥) ∈ V
6160, 60brtp 5483 . . . . . . . . . . 11 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
62 3oran 1108 . . . . . . . . . . 11 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
6361, 62bitri 275 . . . . . . . . . 10 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
6463con2bii 357 . . . . . . . . 9 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
6559, 64mpbi 230 . . . . . . . 8 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
66 simpl2l 1227 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → (𝐴𝑋) = (𝐵𝑋))
6766adantr 480 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
6867fveq1d 6860 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
6968breq2d 5119 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
7065, 69mtbii 326 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
71 fvres 6877 . . . . . . . . 9 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
72 fvres 6877 . . . . . . . . 9 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
7371, 72breq12d 5120 . . . . . . . 8 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7473notbid 318 . . . . . . 7 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7570, 74syl5ibcom 245 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7651neii 2927 . . . . . . . . . . 11 ¬ 2o = 1o
7776intnanr 487 . . . . . . . . . 10 ¬ (2o = 1o ∧ ∅ = ∅)
7856intnan 486 . . . . . . . . . 10 ¬ (2o = 1o ∧ ∅ = 2o)
7956intnan 486 . . . . . . . . . 10 ¬ (2o = ∅ ∧ ∅ = 2o)
8077, 78, 793pm3.2i 1340 . . . . . . . . 9 (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o))
81 2oex 8445 . . . . . . . . . . . 12 2o ∈ V
82 0ex 5262 . . . . . . . . . . . 12 ∅ ∈ V
8381, 82brtp 5483 . . . . . . . . . . 11 (2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ ((2o = 1o ∧ ∅ = ∅) ∨ (2o = 1o ∧ ∅ = 2o) ∨ (2o = ∅ ∧ ∅ = 2o)))
84 3oran 1108 . . . . . . . . . . 11 (((2o = 1o ∧ ∅ = ∅) ∨ (2o = 1o ∧ ∅ = 2o) ∨ (2o = ∅ ∧ ∅ = 2o)) ↔ ¬ (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)))
8583, 84bitri 275 . . . . . . . . . 10 (2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ ¬ (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)))
8685con2bii 357 . . . . . . . . 9 ((¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)) ↔ ¬ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅)
8780, 86mpbi 230 . . . . . . . 8 ¬ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅
88 simplr 768 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = 2o)
89 simpll3 1215 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = ∅)
9088, 89breq12d 5120 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅))
9187, 90mtbiri 327 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
92 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
93 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9492, 93breq12d 5120 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
9594notbid 318 . . . . . . 7 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
9691, 95syl5ibrcom 247 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
97 fveq2 6858 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
98 fveq2 6858 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
9997, 98eqeq12d 2745 . . . . . . . . . . . 12 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
10099rspccv 3585 . . . . . . . . . . 11 (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝑋𝑥 → (𝐴𝑋) = (𝐵𝑋)))
101100ad2antll 729 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → (𝐴𝑋) = (𝐵𝑋)))
102 eqcom 2736 . . . . . . . . . 10 ((𝐴𝑋) = (𝐵𝑋) ↔ (𝐵𝑋) = (𝐴𝑋))
103101, 102imbitrdi 251 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → (𝐵𝑋) = (𝐴𝑋)))
10489, 88eqeq12d 2745 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐵𝑋) = (𝐴𝑋) ↔ ∅ = 2o))
105103, 104sylibd 239 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → ∅ = 2o))
10656, 105mtoi 199 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
107 simprl 770 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
108 simpl13 1251 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → 𝑋 ∈ On)
109108adantr 480 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
110 ontri1 6366 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
111 onsseleq 6373 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
112110, 111bitr3d 281 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (¬ 𝑋𝑥 ↔ (𝑥𝑋𝑥 = 𝑋)))
113107, 109, 112syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (¬ 𝑋𝑥 ↔ (𝑥𝑋𝑥 = 𝑋)))
114106, 113mpbid 232 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋𝑥 = 𝑋))
11575, 96, 114mpjaod 860 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
116115expr 456 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
117116ralrimiva 3125 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
11838, 117mtand 815 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ (𝐴𝑋) = 2o)
119 nofv 27569 . . . 4 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
1202, 119syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
121 3orcoma 1092 . . 3 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 2o))
122120, 121sylib 218 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 2o))
12330, 118, 122ecase23d 1475 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296  {ctp 4593  cop 4595   class class class wbr 5107   Or wor 5545  dom cdm 5638  cres 5640  Rel wrel 5643  Ord word 6331  Oncon0 6332  suc csuc 6334  Fun wfun 6505  cfv 6511  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555
This theorem is referenced by:  noinfbnd1lem4  27638
  Copyright terms: Public domain W3C validator