MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nogt01o Structured version   Visualization version   GIF version

Theorem nogt01o 27188
Description: Given 𝐴 greater than 𝐵, equal to 𝐵 up to 𝑋, and 𝐵(𝑋) undefined, then 𝐴(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
nogt01o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 1o)

Proof of Theorem nogt01o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltso 27168 . . . 4 <s Or No
2 simp11 1203 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
3 sonr 5610 . . . 4 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
41, 2, 3sylancr 587 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
5 simpl2r 1227 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
6 simpl2l 1226 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
7 simpl11 1248 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
8 nofun 27141 . . . . . . . 8 (𝐴 No → Fun 𝐴)
9 funrel 6562 . . . . . . . 8 (Fun 𝐴 → Rel 𝐴)
108, 9syl 17 . . . . . . 7 (𝐴 No → Rel 𝐴)
117, 10syl 17 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → Rel 𝐴)
12 simpl13 1250 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝑋 ∈ On)
13 simpr 485 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = ∅)
14 nolt02olem 27186 . . . . . . 7 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
157, 12, 13, 14syl3anc 1371 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
16 relssres 6020 . . . . . 6 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
1711, 15, 16syl2anc 584 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = 𝐴)
18 simpl12 1249 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
19 nofun 27141 . . . . . . . 8 (𝐵 No → Fun 𝐵)
20 funrel 6562 . . . . . . . 8 (Fun 𝐵 → Rel 𝐵)
2119, 20syl 17 . . . . . . 7 (𝐵 No → Rel 𝐵)
2218, 21syl 17 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → Rel 𝐵)
23 simpl3 1193 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = ∅)
24 nolt02olem 27186 . . . . . . 7 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2518, 12, 23, 24syl3anc 1371 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → dom 𝐵𝑋)
26 relssres 6020 . . . . . 6 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2722, 25, 26syl2anc 584 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 𝐵)
286, 17, 273eqtr3d 2780 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 = 𝐵)
295, 28breqtrrd 5175 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐴)
304, 29mtand 814 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ (𝐴𝑋) = ∅)
31 simp2r 1200 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐴 <s 𝐵)
32 simp12 1204 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
33 sltval 27139 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
342, 32, 33syl2anc 584 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
3531, 34mpbid 231 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 ralinexa 3101 . . . . 5 (∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736con2bii 357 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3835, 37sylib 217 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
39 1n0 8484 . . . . . . . . . . . 12 1o ≠ ∅
4039neii 2942 . . . . . . . . . . 11 ¬ 1o = ∅
41 eqtr2 2756 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → 1o = ∅)
4240, 41mto 196 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
43 df-2o 8463 . . . . . . . . . . . . 13 2o = suc 1o
44 2on 8476 . . . . . . . . . . . . . . . 16 2o ∈ On
4543, 44eqeltrri 2830 . . . . . . . . . . . . . . 15 suc 1o ∈ On
4645onordi 6472 . . . . . . . . . . . . . 14 Ord suc 1o
47 1oex 8472 . . . . . . . . . . . . . . 15 1o ∈ V
4847sucid 6443 . . . . . . . . . . . . . 14 1o ∈ suc 1o
49 nordeq 6380 . . . . . . . . . . . . . 14 ((Ord suc 1o ∧ 1o ∈ suc 1o) → suc 1o ≠ 1o)
5046, 48, 49mp2an 690 . . . . . . . . . . . . 13 suc 1o ≠ 1o
5143, 50eqnetri 3011 . . . . . . . . . . . 12 2o ≠ 1o
5251nesymi 2998 . . . . . . . . . . 11 ¬ 1o = 2o
53 eqtr2 2756 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
5452, 53mto 196 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
55 2on0 8478 . . . . . . . . . . . 12 2o ≠ ∅
5655nesymi 2998 . . . . . . . . . . 11 ¬ ∅ = 2o
57 eqtr2 2756 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
5856, 57mto 196 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
5942, 54, 583pm3.2i 1339 . . . . . . . . 9 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
60 fvex 6901 . . . . . . . . . . . 12 ((𝐴𝑋)‘𝑥) ∈ V
6160, 60brtp 5522 . . . . . . . . . . 11 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
62 3oran 1109 . . . . . . . . . . 11 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
6361, 62bitri 274 . . . . . . . . . 10 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
6463con2bii 357 . . . . . . . . 9 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
6559, 64mpbi 229 . . . . . . . 8 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
66 simpl2l 1226 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → (𝐴𝑋) = (𝐵𝑋))
6766adantr 481 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
6867fveq1d 6890 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
6968breq2d 5159 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
7065, 69mtbii 325 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
71 fvres 6907 . . . . . . . . 9 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
72 fvres 6907 . . . . . . . . 9 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
7371, 72breq12d 5160 . . . . . . . 8 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7473notbid 317 . . . . . . 7 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7570, 74syl5ibcom 244 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7651neii 2942 . . . . . . . . . . 11 ¬ 2o = 1o
7776intnanr 488 . . . . . . . . . 10 ¬ (2o = 1o ∧ ∅ = ∅)
7856intnan 487 . . . . . . . . . 10 ¬ (2o = 1o ∧ ∅ = 2o)
7956intnan 487 . . . . . . . . . 10 ¬ (2o = ∅ ∧ ∅ = 2o)
8077, 78, 793pm3.2i 1339 . . . . . . . . 9 (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o))
81 2oex 8473 . . . . . . . . . . . 12 2o ∈ V
82 0ex 5306 . . . . . . . . . . . 12 ∅ ∈ V
8381, 82brtp 5522 . . . . . . . . . . 11 (2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ ((2o = 1o ∧ ∅ = ∅) ∨ (2o = 1o ∧ ∅ = 2o) ∨ (2o = ∅ ∧ ∅ = 2o)))
84 3oran 1109 . . . . . . . . . . 11 (((2o = 1o ∧ ∅ = ∅) ∨ (2o = 1o ∧ ∅ = 2o) ∨ (2o = ∅ ∧ ∅ = 2o)) ↔ ¬ (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)))
8583, 84bitri 274 . . . . . . . . . 10 (2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ ¬ (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)))
8685con2bii 357 . . . . . . . . 9 ((¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)) ↔ ¬ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅)
8780, 86mpbi 229 . . . . . . . 8 ¬ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅
88 simplr 767 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = 2o)
89 simpll3 1214 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = ∅)
9088, 89breq12d 5160 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅))
9187, 90mtbiri 326 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
92 fveq2 6888 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
93 fveq2 6888 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9492, 93breq12d 5160 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
9594notbid 317 . . . . . . 7 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
9691, 95syl5ibrcom 246 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
97 fveq2 6888 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
98 fveq2 6888 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
9997, 98eqeq12d 2748 . . . . . . . . . . . 12 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
10099rspccv 3609 . . . . . . . . . . 11 (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝑋𝑥 → (𝐴𝑋) = (𝐵𝑋)))
101100ad2antll 727 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → (𝐴𝑋) = (𝐵𝑋)))
102 eqcom 2739 . . . . . . . . . 10 ((𝐴𝑋) = (𝐵𝑋) ↔ (𝐵𝑋) = (𝐴𝑋))
103101, 102imbitrdi 250 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → (𝐵𝑋) = (𝐴𝑋)))
10489, 88eqeq12d 2748 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐵𝑋) = (𝐴𝑋) ↔ ∅ = 2o))
105103, 104sylibd 238 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → ∅ = 2o))
10656, 105mtoi 198 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
107 simprl 769 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
108 simpl13 1250 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → 𝑋 ∈ On)
109108adantr 481 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
110 ontri1 6395 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
111 onsseleq 6402 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
112110, 111bitr3d 280 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (¬ 𝑋𝑥 ↔ (𝑥𝑋𝑥 = 𝑋)))
113107, 109, 112syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (¬ 𝑋𝑥 ↔ (𝑥𝑋𝑥 = 𝑋)))
114106, 113mpbid 231 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋𝑥 = 𝑋))
11575, 96, 114mpjaod 858 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
116115expr 457 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
117116ralrimiva 3146 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
11838, 117mtand 814 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ (𝐴𝑋) = 2o)
119 nofv 27149 . . . 4 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
1202, 119syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
121 3orcoma 1093 . . 3 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 2o))
122120, 121sylib 217 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 2o))
12330, 118, 122ecase23d 1473 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321  {ctp 4631  cop 4633   class class class wbr 5147   Or wor 5586  dom cdm 5675  cres 5677  Rel wrel 5680  Ord word 6360  Oncon0 6361  suc csuc 6363  Fun wfun 6534  cfv 6540  1oc1o 8455  2oc2o 8456   No csur 27132   <s cslt 27133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136
This theorem is referenced by:  noinfbnd1lem4  27218
  Copyright terms: Public domain W3C validator