MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nogt01o Structured version   Visualization version   GIF version

Theorem nogt01o 27665
Description: Given 𝐴 greater than 𝐵, equal to 𝐵 up to 𝑋, and 𝐵(𝑋) undefined, then 𝐴(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
nogt01o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 1o)

Proof of Theorem nogt01o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltso 27645 . . . 4 <s Or No
2 simp11 1204 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
3 sonr 5590 . . . 4 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
41, 2, 3sylancr 587 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
5 simpl2r 1228 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
6 simpl2l 1227 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
7 simpl11 1249 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
8 nofun 27618 . . . . . . . 8 (𝐴 No → Fun 𝐴)
9 funrel 6558 . . . . . . . 8 (Fun 𝐴 → Rel 𝐴)
108, 9syl 17 . . . . . . 7 (𝐴 No → Rel 𝐴)
117, 10syl 17 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → Rel 𝐴)
12 simpl13 1251 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝑋 ∈ On)
13 simpr 484 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = ∅)
14 nolt02olem 27663 . . . . . . 7 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
157, 12, 13, 14syl3anc 1373 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
16 relssres 6014 . . . . . 6 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
1711, 15, 16syl2anc 584 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐴𝑋) = 𝐴)
18 simpl12 1250 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
19 nofun 27618 . . . . . . . 8 (𝐵 No → Fun 𝐵)
20 funrel 6558 . . . . . . . 8 (Fun 𝐵 → Rel 𝐵)
2119, 20syl 17 . . . . . . 7 (𝐵 No → Rel 𝐵)
2218, 21syl 17 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → Rel 𝐵)
23 simpl3 1194 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = ∅)
24 nolt02olem 27663 . . . . . . 7 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2518, 12, 23, 24syl3anc 1373 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → dom 𝐵𝑋)
26 relssres 6014 . . . . . 6 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2722, 25, 26syl2anc 584 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 𝐵)
286, 17, 273eqtr3d 2779 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 = 𝐵)
295, 28breqtrrd 5152 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐴)
304, 29mtand 815 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ (𝐴𝑋) = ∅)
31 simp2r 1201 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐴 <s 𝐵)
32 simp12 1205 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
33 sltval 27616 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
342, 32, 33syl2anc 584 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
3531, 34mpbid 232 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 ralinexa 3091 . . . . 5 (∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736con2bii 357 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3835, 37sylib 218 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
39 1n0 8505 . . . . . . . . . . . 12 1o ≠ ∅
4039neii 2935 . . . . . . . . . . 11 ¬ 1o = ∅
41 eqtr2 2757 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → 1o = ∅)
4240, 41mto 197 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
43 df-2o 8486 . . . . . . . . . . . . 13 2o = suc 1o
44 2on 8499 . . . . . . . . . . . . . . . 16 2o ∈ On
4543, 44eqeltrri 2832 . . . . . . . . . . . . . . 15 suc 1o ∈ On
4645onordi 6470 . . . . . . . . . . . . . 14 Ord suc 1o
47 1oex 8495 . . . . . . . . . . . . . . 15 1o ∈ V
4847sucid 6441 . . . . . . . . . . . . . 14 1o ∈ suc 1o
49 nordeq 6376 . . . . . . . . . . . . . 14 ((Ord suc 1o ∧ 1o ∈ suc 1o) → suc 1o ≠ 1o)
5046, 48, 49mp2an 692 . . . . . . . . . . . . 13 suc 1o ≠ 1o
5143, 50eqnetri 3003 . . . . . . . . . . . 12 2o ≠ 1o
5251nesymi 2990 . . . . . . . . . . 11 ¬ 1o = 2o
53 eqtr2 2757 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
5452, 53mto 197 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
55 2on0 8501 . . . . . . . . . . . 12 2o ≠ ∅
5655nesymi 2990 . . . . . . . . . . 11 ¬ ∅ = 2o
57 eqtr2 2757 . . . . . . . . . . 11 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
5856, 57mto 197 . . . . . . . . . 10 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
5942, 54, 583pm3.2i 1340 . . . . . . . . 9 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
60 fvex 6894 . . . . . . . . . . . 12 ((𝐴𝑋)‘𝑥) ∈ V
6160, 60brtp 5503 . . . . . . . . . . 11 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
62 3oran 1108 . . . . . . . . . . 11 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
6361, 62bitri 275 . . . . . . . . . 10 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
6463con2bii 357 . . . . . . . . 9 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
6559, 64mpbi 230 . . . . . . . 8 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
66 simpl2l 1227 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → (𝐴𝑋) = (𝐵𝑋))
6766adantr 480 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
6867fveq1d 6883 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
6968breq2d 5136 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
7065, 69mtbii 326 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
71 fvres 6900 . . . . . . . . 9 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
72 fvres 6900 . . . . . . . . 9 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
7371, 72breq12d 5137 . . . . . . . 8 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7473notbid 318 . . . . . . 7 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7570, 74syl5ibcom 245 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7651neii 2935 . . . . . . . . . . 11 ¬ 2o = 1o
7776intnanr 487 . . . . . . . . . 10 ¬ (2o = 1o ∧ ∅ = ∅)
7856intnan 486 . . . . . . . . . 10 ¬ (2o = 1o ∧ ∅ = 2o)
7956intnan 486 . . . . . . . . . 10 ¬ (2o = ∅ ∧ ∅ = 2o)
8077, 78, 793pm3.2i 1340 . . . . . . . . 9 (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o))
81 2oex 8496 . . . . . . . . . . . 12 2o ∈ V
82 0ex 5282 . . . . . . . . . . . 12 ∅ ∈ V
8381, 82brtp 5503 . . . . . . . . . . 11 (2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ ((2o = 1o ∧ ∅ = ∅) ∨ (2o = 1o ∧ ∅ = 2o) ∨ (2o = ∅ ∧ ∅ = 2o)))
84 3oran 1108 . . . . . . . . . . 11 (((2o = 1o ∧ ∅ = ∅) ∨ (2o = 1o ∧ ∅ = 2o) ∨ (2o = ∅ ∧ ∅ = 2o)) ↔ ¬ (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)))
8583, 84bitri 275 . . . . . . . . . 10 (2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ ¬ (¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)))
8685con2bii 357 . . . . . . . . 9 ((¬ (2o = 1o ∧ ∅ = ∅) ∧ ¬ (2o = 1o ∧ ∅ = 2o) ∧ ¬ (2o = ∅ ∧ ∅ = 2o)) ↔ ¬ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅)
8780, 86mpbi 230 . . . . . . . 8 ¬ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅
88 simplr 768 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = 2o)
89 simpll3 1215 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = ∅)
9088, 89breq12d 5137 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ 2o{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅))
9187, 90mtbiri 327 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
92 fveq2 6881 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
93 fveq2 6881 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9492, 93breq12d 5137 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
9594notbid 318 . . . . . . 7 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
9691, 95syl5ibrcom 247 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
97 fveq2 6881 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
98 fveq2 6881 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
9997, 98eqeq12d 2752 . . . . . . . . . . . 12 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
10099rspccv 3603 . . . . . . . . . . 11 (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝑋𝑥 → (𝐴𝑋) = (𝐵𝑋)))
101100ad2antll 729 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → (𝐴𝑋) = (𝐵𝑋)))
102 eqcom 2743 . . . . . . . . . 10 ((𝐴𝑋) = (𝐵𝑋) ↔ (𝐵𝑋) = (𝐴𝑋))
103101, 102imbitrdi 251 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → (𝐵𝑋) = (𝐴𝑋)))
10489, 88eqeq12d 2752 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐵𝑋) = (𝐴𝑋) ↔ ∅ = 2o))
105103, 104sylibd 239 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑋𝑥 → ∅ = 2o))
10656, 105mtoi 199 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
107 simprl 770 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
108 simpl13 1251 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → 𝑋 ∈ On)
109108adantr 480 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
110 ontri1 6391 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
111 onsseleq 6398 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
112110, 111bitr3d 281 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (¬ 𝑋𝑥 ↔ (𝑥𝑋𝑥 = 𝑋)))
113107, 109, 112syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (¬ 𝑋𝑥 ↔ (𝑥𝑋𝑥 = 𝑋)))
114106, 113mpbid 232 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋𝑥 = 𝑋))
11575, 96, 114mpjaod 860 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
116115expr 456 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
117116ralrimiva 3133 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) ∧ (𝐴𝑋) = 2o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
11838, 117mtand 815 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ¬ (𝐴𝑋) = 2o)
119 nofv 27626 . . . 4 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
1202, 119syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
121 3orcoma 1092 . . 3 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 2o))
122120, 121sylib 218 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 2o))
12330, 118, 122ecase23d 1475 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313  {ctp 4610  cop 4612   class class class wbr 5124   Or wor 5565  dom cdm 5659  cres 5661  Rel wrel 5664  Ord word 6356  Oncon0 6357  suc csuc 6359  Fun wfun 6530  cfv 6536  1oc1o 8478  2oc2o 8479   No csur 27608   <s cslt 27609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612
This theorem is referenced by:  noinfbnd1lem4  27695
  Copyright terms: Public domain W3C validator