| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1608 moeq3 3680 sotric 5569 sotrieq 5570 isso2i 5576 ordzsl 7801 soxp 8085 frxp3 8107 wemapsolem 9479 rankxpsuc 9811 tcrank 9813 cardlim 9901 cardaleph 10018 grur1 10749 elnnz 12515 elznn0 12520 elznn 12521 elxr 13052 xrrebnd 13104 xaddf 13160 xrinfmss 13246 elfzlmr 13718 ssnn0fi 13926 hashv01gt1 14286 hashtpg 14426 swrdnd2 14596 pfxnd0 14629 orngsqr 20786 nofv 27602 nosepon 27610 elzs2 28327 elnnzs 28329 elznns 28330 tgldimor 28482 outpasch 28735 xrdifh 32753 eliccioo 32901 elzdif0 33963 qqhval2lem 33964 dfso2 35735 dfon2lem5 35768 dfon2lem6 35769 ecase13d 36294 elicc3 36298 wl-df4-3mintru2 37468 wl-exeq 37515 dvasin 37691 4atlem3a 39584 4atlem3b 39585 frege133d 43747 or3or 44005 3ornot23VD 44829 xrssre 45337 usgrexmpl2nb0 48015 usgrexmpl2nb2 48017 usgrexmpl2nb3 48018 usgrexmpl2nb5 48020 |
| Copyright terms: Public domain | W3C validator |