| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1609 moeq3 3666 sotric 5552 sotrieq 5553 isso2i 5559 ordzsl 7775 soxp 8059 frxp3 8081 wemapsolem 9436 rankxpsuc 9775 tcrank 9777 cardlim 9865 cardaleph 9980 grur1 10711 elnnz 12478 elznn0 12483 elznn 12484 elxr 13015 xrrebnd 13067 xaddf 13123 xrinfmss 13209 elfzlmr 13682 ssnn0fi 13892 hashv01gt1 14252 hashtpg 14392 swrdnd2 14563 pfxnd0 14596 chnccat 18532 orngsqr 20781 nofv 27596 nosepon 27604 elzs2 28323 elnnzs 28325 elznns 28326 tgldimor 28480 outpasch 28733 xrdifh 32763 eliccioo 32911 elzdif0 33993 qqhval2lem 33994 dfso2 35799 dfon2lem5 35829 dfon2lem6 35830 ecase13d 36357 elicc3 36361 wl-df4-3mintru2 37531 wl-exeq 37578 dvasin 37743 4atlem3a 39695 4atlem3b 39696 frege133d 43857 or3or 44115 3ornot23VD 44938 xrssre 45446 usgrexmpl2nb0 48130 usgrexmpl2nb2 48132 usgrexmpl2nb3 48133 usgrexmpl2nb5 48135 |
| Copyright terms: Public domain | W3C validator |