Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 919 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1329 ecase23d 1472 3bior1fd 1474 cador 1610 moeq3 3647 sotric 5527 sotrieq 5528 isso2i 5534 ordzsl 7683 soxp 7958 wemapsolem 9297 rankxpsuc 9628 tcrank 9630 cardlim 9718 cardaleph 9833 grur1 10564 elnnz 12317 elznn0 12322 elznn 12323 elxr 12840 xrrebnd 12890 xaddf 12946 xrinfmss 13032 elfzlmr 13489 ssnn0fi 13693 hashv01gt1 14047 hashtpg 14187 swrdnd2 14356 pfxnd0 14389 tgldimor 26851 outpasch 27104 xrdifh 31087 eliccioo 31191 orngsqr 31489 elzdif0 31916 qqhval2lem 31917 dfso2 33708 dfon2lem5 33749 dfon2lem6 33750 frxp3 33783 nofv 33846 nosepon 33854 ecase13d 34488 elicc3 34492 wl-df4-3mintru2 35644 wl-exeq 35679 dvasin 35847 4atlem3a 37597 4atlem3b 37598 frege133d 41332 or3or 41590 3ornot23VD 42426 xrssre 42846 |
Copyright terms: Public domain | W3C validator |