![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1329 ecase23d 1472 3bior1fd 1474 cador 1604 moeq3 3720 sotric 5625 sotrieq 5626 isso2i 5632 ordzsl 7865 soxp 8152 frxp3 8174 wemapsolem 9587 rankxpsuc 9919 tcrank 9921 cardlim 10009 cardaleph 10126 grur1 10857 elnnz 12620 elznn0 12625 elznn 12626 elxr 13155 xrrebnd 13206 xaddf 13262 xrinfmss 13348 elfzlmr 13816 ssnn0fi 14022 hashv01gt1 14380 hashtpg 14520 swrdnd2 14689 pfxnd0 14722 nofv 27716 nosepon 27724 elzs2 28399 elnnzs 28401 elznns 28402 tgldimor 28524 outpasch 28777 xrdifh 32788 eliccioo 32897 orngsqr 33313 elzdif0 33942 qqhval2lem 33943 dfso2 35734 dfon2lem5 35768 dfon2lem6 35769 ecase13d 36295 elicc3 36299 wl-df4-3mintru2 37469 wl-exeq 37514 dvasin 37690 4atlem3a 39579 4atlem3b 39580 frege133d 43754 or3or 44012 3ornot23VD 44844 xrssre 45297 usgrexmpl2nb0 47925 usgrexmpl2nb2 47927 usgrexmpl2nb3 47928 usgrexmpl2nb5 47930 |
Copyright terms: Public domain | W3C validator |