| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1330 ecase23d 1474 3bior1fd 1476 cador 1607 moeq3 3700 sotric 5602 sotrieq 5603 isso2i 5609 ordzsl 7848 soxp 8136 frxp3 8158 wemapsolem 9572 rankxpsuc 9904 tcrank 9906 cardlim 9994 cardaleph 10111 grur1 10842 elnnz 12606 elznn0 12611 elznn 12612 elxr 13140 xrrebnd 13192 xaddf 13248 xrinfmss 13334 elfzlmr 13802 ssnn0fi 14008 hashv01gt1 14366 hashtpg 14506 swrdnd2 14675 pfxnd0 14708 nofv 27638 nosepon 27646 elzs2 28321 elnnzs 28323 elznns 28324 tgldimor 28446 outpasch 28699 xrdifh 32721 eliccioo 32853 orngsqr 33274 elzdif0 33940 qqhval2lem 33941 dfso2 35714 dfon2lem5 35747 dfon2lem6 35748 ecase13d 36273 elicc3 36277 wl-df4-3mintru2 37447 wl-exeq 37494 dvasin 37670 4atlem3a 39558 4atlem3b 39559 frege133d 43740 or3or 43998 3ornot23VD 44824 xrssre 45316 usgrexmpl2nb0 47948 usgrexmpl2nb2 47950 usgrexmpl2nb3 47951 usgrexmpl2nb5 47953 |
| Copyright terms: Public domain | W3C validator |