| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1608 moeq3 3683 sotric 5576 sotrieq 5577 isso2i 5583 ordzsl 7821 soxp 8108 frxp3 8130 wemapsolem 9503 rankxpsuc 9835 tcrank 9837 cardlim 9925 cardaleph 10042 grur1 10773 elnnz 12539 elznn0 12544 elznn 12545 elxr 13076 xrrebnd 13128 xaddf 13184 xrinfmss 13270 elfzlmr 13742 ssnn0fi 13950 hashv01gt1 14310 hashtpg 14450 swrdnd2 14620 pfxnd0 14653 nofv 27569 nosepon 27577 elzs2 28287 elnnzs 28289 elznns 28290 tgldimor 28429 outpasch 28682 xrdifh 32703 eliccioo 32851 orngsqr 33282 elzdif0 33970 qqhval2lem 33971 dfso2 35742 dfon2lem5 35775 dfon2lem6 35776 ecase13d 36301 elicc3 36305 wl-df4-3mintru2 37475 wl-exeq 37522 dvasin 37698 4atlem3a 39591 4atlem3b 39592 frege133d 43754 or3or 44012 3ornot23VD 44836 xrssre 45344 usgrexmpl2nb0 48022 usgrexmpl2nb2 48024 usgrexmpl2nb3 48025 usgrexmpl2nb5 48027 |
| Copyright terms: Public domain | W3C validator |