Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1086 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 918 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: 3orel1 1089 3orrot 1090 3orcoma 1091 3mix1 1328 ecase23d 1471 3bior1fd 1473 cador 1611 moeq3 3642 sotric 5522 sotrieq 5523 isso2i 5529 ordzsl 7667 soxp 7941 wemapsolem 9239 rankxpsuc 9571 tcrank 9573 cardlim 9661 cardaleph 9776 grur1 10507 elnnz 12259 elznn0 12264 elznn 12265 elxr 12781 xrrebnd 12831 xaddf 12887 xrinfmss 12973 elfzlmr 13429 ssnn0fi 13633 hashv01gt1 13987 hashtpg 14127 swrdnd2 14296 pfxnd0 14329 tgldimor 26767 outpasch 27020 xrdifh 31003 eliccioo 31107 orngsqr 31405 elzdif0 31830 qqhval2lem 31831 dfso2 33628 dfon2lem5 33669 dfon2lem6 33670 frxp3 33724 nofv 33787 nosepon 33795 ecase13d 34429 elicc3 34433 wl-df4-3mintru2 35585 wl-exeq 35620 dvasin 35788 4atlem3a 37538 4atlem3b 37539 frege133d 41262 or3or 41520 3ornot23VD 42356 xrssre 42777 |
Copyright terms: Public domain | W3C validator |