![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 920 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: 3orel1 1091 3orrot 1092 3orcoma 1093 3mix1 1330 ecase23d 1473 3bior1fd 1475 cador 1605 moeq3 3734 sotric 5637 sotrieq 5638 isso2i 5644 ordzsl 7882 soxp 8170 frxp3 8192 wemapsolem 9619 rankxpsuc 9951 tcrank 9953 cardlim 10041 cardaleph 10158 grur1 10889 elnnz 12649 elznn0 12654 elznn 12655 elxr 13179 xrrebnd 13230 xaddf 13286 xrinfmss 13372 elfzlmr 13831 ssnn0fi 14036 hashv01gt1 14394 hashtpg 14534 swrdnd2 14703 pfxnd0 14736 nofv 27720 nosepon 27728 elzs2 28403 elnnzs 28405 elznns 28406 tgldimor 28528 outpasch 28781 xrdifh 32785 eliccioo 32895 orngsqr 33299 elzdif0 33926 qqhval2lem 33927 dfso2 35717 dfon2lem5 35751 dfon2lem6 35752 ecase13d 36279 elicc3 36283 wl-df4-3mintru2 37453 wl-exeq 37488 dvasin 37664 4atlem3a 39554 4atlem3b 39555 frege133d 43727 or3or 43985 3ornot23VD 44818 xrssre 45263 usgrexmpl2nb0 47846 usgrexmpl2nb2 47848 usgrexmpl2nb3 47849 usgrexmpl2nb5 47851 |
Copyright terms: Public domain | W3C validator |