| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1608 moeq3 3680 sotric 5569 sotrieq 5570 isso2i 5576 ordzsl 7801 soxp 8085 frxp3 8107 wemapsolem 9479 rankxpsuc 9813 tcrank 9815 cardlim 9903 cardaleph 10020 grur1 10751 elnnz 12517 elznn0 12522 elznn 12523 elxr 13054 xrrebnd 13106 xaddf 13162 xrinfmss 13248 elfzlmr 13720 ssnn0fi 13928 hashv01gt1 14288 hashtpg 14428 swrdnd2 14598 pfxnd0 14631 orngsqr 20787 nofv 27603 nosepon 27611 elzs2 28328 elnnzs 28330 elznns 28331 tgldimor 28483 outpasch 28736 xrdifh 32754 eliccioo 32902 elzdif0 33964 qqhval2lem 33965 dfso2 35736 dfon2lem5 35769 dfon2lem6 35770 ecase13d 36295 elicc3 36299 wl-df4-3mintru2 37469 wl-exeq 37516 dvasin 37692 4atlem3a 39585 4atlem3b 39586 frege133d 43748 or3or 44006 3ornot23VD 44830 xrssre 45338 usgrexmpl2nb0 48016 usgrexmpl2nb2 48018 usgrexmpl2nb3 48019 usgrexmpl2nb5 48021 |
| Copyright terms: Public domain | W3C validator |