| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1608 moeq3 3672 sotric 5557 sotrieq 5558 isso2i 5564 ordzsl 7778 soxp 8062 frxp3 8084 wemapsolem 9442 rankxpsuc 9778 tcrank 9780 cardlim 9868 cardaleph 9983 grur1 10714 elnnz 12481 elznn0 12486 elznn 12487 elxr 13018 xrrebnd 13070 xaddf 13126 xrinfmss 13212 elfzlmr 13684 ssnn0fi 13892 hashv01gt1 14252 hashtpg 14392 swrdnd2 14562 pfxnd0 14595 orngsqr 20751 nofv 27567 nosepon 27575 elzs2 28294 elnnzs 28296 elznns 28297 tgldimor 28451 outpasch 28704 xrdifh 32732 eliccioo 32880 elzdif0 33963 qqhval2lem 33964 dfso2 35748 dfon2lem5 35781 dfon2lem6 35782 ecase13d 36307 elicc3 36311 wl-df4-3mintru2 37481 wl-exeq 37528 dvasin 37704 4atlem3a 39596 4atlem3b 39597 frege133d 43758 or3or 44016 3ornot23VD 44840 xrssre 45348 usgrexmpl2nb0 48035 usgrexmpl2nb2 48037 usgrexmpl2nb3 48038 usgrexmpl2nb5 48040 |
| Copyright terms: Public domain | W3C validator |