Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | orass 919 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1329 ecase23d 1472 3bior1fd 1474 cador 1610 moeq3 3647 sotric 5531 sotrieq 5532 isso2i 5538 ordzsl 7692 soxp 7970 wemapsolem 9309 rankxpsuc 9640 tcrank 9642 cardlim 9730 cardaleph 9845 grur1 10576 elnnz 12329 elznn0 12334 elznn 12335 elxr 12852 xrrebnd 12902 xaddf 12958 xrinfmss 13044 elfzlmr 13501 ssnn0fi 13705 hashv01gt1 14059 hashtpg 14199 swrdnd2 14368 pfxnd0 14401 tgldimor 26863 outpasch 27116 xrdifh 31101 eliccioo 31205 orngsqr 31503 elzdif0 31930 qqhval2lem 31931 dfso2 33722 dfon2lem5 33763 dfon2lem6 33764 frxp3 33797 nofv 33860 nosepon 33868 ecase13d 34502 elicc3 34506 wl-df4-3mintru2 35658 wl-exeq 35693 dvasin 35861 4atlem3a 37611 4atlem3b 37612 frege133d 41373 or3or 41631 3ornot23VD 42467 xrssre 42887 |
Copyright terms: Public domain | W3C validator |