| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1608 moeq3 3695 sotric 5591 sotrieq 5592 isso2i 5598 ordzsl 7840 soxp 8128 frxp3 8150 wemapsolem 9564 rankxpsuc 9896 tcrank 9898 cardlim 9986 cardaleph 10103 grur1 10834 elnnz 12598 elznn0 12603 elznn 12604 elxr 13132 xrrebnd 13184 xaddf 13240 xrinfmss 13326 elfzlmr 13797 ssnn0fi 14003 hashv01gt1 14363 hashtpg 14503 swrdnd2 14673 pfxnd0 14706 nofv 27621 nosepon 27629 elzs2 28339 elnnzs 28341 elznns 28342 tgldimor 28481 outpasch 28734 xrdifh 32757 eliccioo 32905 orngsqr 33326 elzdif0 34011 qqhval2lem 34012 dfso2 35772 dfon2lem5 35805 dfon2lem6 35806 ecase13d 36331 elicc3 36335 wl-df4-3mintru2 37505 wl-exeq 37552 dvasin 37728 4atlem3a 39616 4atlem3b 39617 frege133d 43789 or3or 44047 3ornot23VD 44871 xrssre 45375 usgrexmpl2nb0 48035 usgrexmpl2nb2 48037 usgrexmpl2nb3 48038 usgrexmpl2nb5 48040 |
| Copyright terms: Public domain | W3C validator |