| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orass | Structured version Visualization version GIF version | ||
| Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3orass | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | orass 921 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orel1 1090 3orrot 1091 3orcoma 1092 3mix1 1331 ecase23d 1475 3bior1fd 1477 cador 1608 moeq3 3686 sotric 5579 sotrieq 5580 isso2i 5586 ordzsl 7824 soxp 8111 frxp3 8133 wemapsolem 9510 rankxpsuc 9842 tcrank 9844 cardlim 9932 cardaleph 10049 grur1 10780 elnnz 12546 elznn0 12551 elznn 12552 elxr 13083 xrrebnd 13135 xaddf 13191 xrinfmss 13277 elfzlmr 13749 ssnn0fi 13957 hashv01gt1 14317 hashtpg 14457 swrdnd2 14627 pfxnd0 14660 nofv 27576 nosepon 27584 elzs2 28294 elnnzs 28296 elznns 28297 tgldimor 28436 outpasch 28689 xrdifh 32710 eliccioo 32858 orngsqr 33289 elzdif0 33977 qqhval2lem 33978 dfso2 35749 dfon2lem5 35782 dfon2lem6 35783 ecase13d 36308 elicc3 36312 wl-df4-3mintru2 37482 wl-exeq 37529 dvasin 37705 4atlem3a 39598 4atlem3b 39599 frege133d 43761 or3or 44019 3ornot23VD 44843 xrssre 45351 usgrexmpl2nb0 48026 usgrexmpl2nb2 48028 usgrexmpl2nb3 48029 usgrexmpl2nb5 48031 |
| Copyright terms: Public domain | W3C validator |