| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccioo | Structured version Visualization version GIF version | ||
| Description: Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| Ref | Expression |
|---|---|
| eliccioo | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo 13376 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
| 2 | 1 | eleq2d 2817 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝐶 ∈ (𝐴[,]𝐵))) |
| 3 | 2 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) |
| 4 | elun 4098 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵})) | |
| 5 | elprg 4594 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ {𝐴, 𝐵} ↔ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
| 6 | 5 | orbi2d 915 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 7 | 4, 6 | bitrid 283 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 9 | 3, 8 | mpbid 232 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) |
| 10 | 3orass 1089 | . . . 4 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
| 11 | 3orcoma 1092 | . . . 4 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) | |
| 12 | 10, 11 | bitr3i 277 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) |
| 13 | 9, 12 | sylib 218 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) |
| 14 | lbicc2 13359 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 16 | eleq1 2819 | . . . . 5 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵))) | |
| 17 | 16 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵))) |
| 18 | 15, 17 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 19 | ioossicc 13328 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 20 | 19 | sseli 3925 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 21 | 20 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 22 | ubicc2 13360 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 23 | 22 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 24 | eleq1 2819 | . . . . 5 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵))) | |
| 25 | 24 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵))) |
| 26 | 23, 25 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 27 | 18, 21, 26 | 3jaodan 1433 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 28 | 13, 27 | impbida 800 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {cpr 4573 class class class wbr 5086 (class class class)co 7341 ℝ*cxr 11140 ≤ cle 11142 (,)cioo 13240 [,]cicc 13243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-ioo 13244 df-ico 13246 df-icc 13247 |
| This theorem is referenced by: elxrge02 32904 |
| Copyright terms: Public domain | W3C validator |