Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccioo Structured version   Visualization version   GIF version

Theorem eliccioo 30360
Description: Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
eliccioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccioo
StepHypRef Expression
1 prunioo 12683 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
21eleq2d 2851 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝐶 ∈ (𝐴[,]𝐵)))
32biimpar 470 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
4 elun 4014 . . . . . 6 (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}))
5 elprg 4462 . . . . . . 7 (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ {𝐴, 𝐵} ↔ (𝐶 = 𝐴𝐶 = 𝐵)))
65orbi2d 899 . . . . . 6 (𝐶 ∈ (𝐴[,]𝐵) → ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵))))
74, 6syl5bb 275 . . . . 5 (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵))))
87adantl 474 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵))))
93, 8mpbid 224 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵)))
10 3orass 1071 . . . 4 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵)))
11 3orcoma 1074 . . . 4 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴𝐶 = 𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))
1210, 11bitr3i 269 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵)) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))
139, 12sylib 210 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))
14 lbicc2 12668 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1514adantr 473 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ (𝐴[,]𝐵))
16 eleq1 2853 . . . . 5 (𝐶 = 𝐴 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵)))
1716adantl 474 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵)))
1815, 17mpbird 249 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,]𝐵))
19 ioossicc 12638 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2019sseli 3854 . . . 4 (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
2120adantl 474 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
22 ubicc2 12669 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2322adantr 473 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
24 eleq1 2853 . . . . 5 (𝐶 = 𝐵 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵)))
2524adantl 474 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵)))
2623, 25mpbird 249 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
2718, 21, 263jaodan 1410 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
2813, 27impbida 788 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3o 1067  w3a 1068   = wceq 1507  wcel 2050  cun 3827  {cpr 4443   class class class wbr 4929  (class class class)co 6976  *cxr 10473  cle 10475  (,)cioo 12554  [,]cicc 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-ioo 12558  df-ico 12560  df-icc 12561
This theorem is referenced by:  elxrge02  30361
  Copyright terms: Public domain W3C validator