| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccioo | Structured version Visualization version GIF version | ||
| Description: Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| Ref | Expression |
|---|---|
| eliccioo | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo 13418 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
| 2 | 1 | eleq2d 2814 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝐶 ∈ (𝐴[,]𝐵))) |
| 3 | 2 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) |
| 4 | elun 4112 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵})) | |
| 5 | elprg 4608 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ {𝐴, 𝐵} ↔ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
| 6 | 5 | orbi2d 915 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 7 | 4, 6 | bitrid 283 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 9 | 3, 8 | mpbid 232 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) |
| 10 | 3orass 1089 | . . . 4 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
| 11 | 3orcoma 1092 | . . . 4 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) | |
| 12 | 10, 11 | bitr3i 277 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) |
| 13 | 9, 12 | sylib 218 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) |
| 14 | lbicc2 13401 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 16 | eleq1 2816 | . . . . 5 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵))) | |
| 17 | 16 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵))) |
| 18 | 15, 17 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 19 | ioossicc 13370 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 20 | 19 | sseli 3939 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 21 | 20 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 22 | ubicc2 13402 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 23 | 22 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 24 | eleq1 2816 | . . . . 5 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵))) | |
| 25 | 24 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵))) |
| 26 | 23, 25 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 27 | 18, 21, 26 | 3jaodan 1433 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 28 | 13, 27 | impbida 800 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 {cpr 4587 class class class wbr 5102 (class class class)co 7369 ℝ*cxr 11183 ≤ cle 11185 (,)cioo 13282 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-ioo 13286 df-ico 13288 df-icc 13289 |
| This theorem is referenced by: elxrge02 32825 |
| Copyright terms: Public domain | W3C validator |