| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccioo | Structured version Visualization version GIF version | ||
| Description: Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| Ref | Expression |
|---|---|
| eliccioo | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prunioo 13448 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
| 2 | 1 | eleq2d 2815 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝐶 ∈ (𝐴[,]𝐵))) |
| 3 | 2 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) |
| 4 | elun 4118 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵})) | |
| 5 | elprg 4614 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ {𝐴, 𝐵} ↔ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
| 6 | 5 | orbi2d 915 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 7 | 4, 6 | bitrid 283 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
| 9 | 3, 8 | mpbid 232 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) |
| 10 | 3orass 1089 | . . . 4 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
| 11 | 3orcoma 1092 | . . . 4 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) | |
| 12 | 10, 11 | bitr3i 277 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) |
| 13 | 9, 12 | sylib 218 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) |
| 14 | lbicc2 13431 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 16 | eleq1 2817 | . . . . 5 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵))) | |
| 17 | 16 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵))) |
| 18 | 15, 17 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 19 | ioossicc 13400 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | |
| 20 | 19 | sseli 3944 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 21 | 20 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 22 | ubicc2 13432 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | |
| 23 | 22 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 24 | eleq1 2817 | . . . . 5 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵))) | |
| 25 | 24 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵))) |
| 26 | 23, 25 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 27 | 18, 21, 26 | 3jaodan 1433 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) ∧ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵)) |
| 28 | 13, 27 | impbida 800 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 {cpr 4593 class class class wbr 5109 (class class class)co 7389 ℝ*cxr 11213 ≤ cle 11215 (,)cioo 13312 [,]cicc 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-ioo 13316 df-ico 13318 df-icc 13319 |
| This theorem is referenced by: elxrge02 32858 |
| Copyright terms: Public domain | W3C validator |