![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3orrot | Structured version Visualization version GIF version |
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3orrot | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 869 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
2 | 3orass 1090 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | df-3or 1088 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: 3orcomb 1094 3mix2 1331 3mix3 1332 3orel2 1484 eueq3 3733 tprot 4774 wemapsolem 9619 ssxr 11359 elnnz 12649 elznn 12655 pfxnd0 14736 nolt02o 27758 nosupbnd2lem1 27778 colrot1 28585 lnrot1 28649 lnrot2 28650 dfon2lem5 35751 dfon2lem6 35752 colinearperm3 36027 wl-exeq 37488 dvasin 37664 frege129d 43725 usgrexmpl2nb0 47846 usgrexmpl2nb3 47849 |
Copyright terms: Public domain | W3C validator |