MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orrot Structured version   Visualization version   GIF version

Theorem 3orrot 1091
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 870 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜓𝜒) ∨ 𝜑))
2 3orass 1089 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
3 df-3or 1087 . 2 ((𝜓𝜒𝜑) ↔ ((𝜓𝜒) ∨ 𝜑))
41, 2, 33bitr4i 303 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3orcomb  1093  3mix2  1332  3mix3  1333  3orel2OLD  1487  eueq3  3671  tprot  4701  wemapsolem  9442  ssxr  11185  elnnz  12481  elznn  12487  pfxnd0  14595  nolt02o  27605  nosupbnd2lem1  27625  colrot1  28504  lnrot1  28568  lnrot2  28569  dfon2lem5  35761  dfon2lem6  35762  colinearperm3  36037  wl-exeq  37508  dvasin  37684  frege129d  43736  usgrexmpl2nb0  48015  usgrexmpl2nb3  48018
  Copyright terms: Public domain W3C validator