| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3orrot | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
| 2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orcomb 1093 3mix2 1332 3mix3 1333 3orel2OLD 1487 eueq3 3671 tprot 4701 wemapsolem 9442 ssxr 11185 elnnz 12481 elznn 12487 pfxnd0 14595 nolt02o 27605 nosupbnd2lem1 27625 colrot1 28504 lnrot1 28568 lnrot2 28569 dfon2lem5 35761 dfon2lem6 35762 colinearperm3 36037 wl-exeq 37508 dvasin 37684 frege129d 43736 usgrexmpl2nb0 48015 usgrexmpl2nb3 48018 |
| Copyright terms: Public domain | W3C validator |