Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orrot | Structured version Visualization version GIF version |
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3orrot | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 866 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
2 | 3orass 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | df-3or 1086 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: 3orcomb 1092 3mix2 1329 3mix3 1330 eueq3 3641 tprot 4682 wemapsolem 9239 ssxr 10975 elnnz 12259 elznn 12265 pfxnd0 14329 colrot1 26824 lnrot1 26888 lnrot2 26889 3orel2 33556 dfon2lem5 33669 dfon2lem6 33670 nolt02o 33825 nosupbnd2lem1 33845 colinearperm3 34292 wl-exeq 35620 dvasin 35788 frege129d 41260 |
Copyright terms: Public domain | W3C validator |