| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3orrot | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
| 2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orcomb 1093 3mix2 1332 3mix3 1333 3orel2OLD 1487 eueq3 3685 tprot 4716 wemapsolem 9510 ssxr 11250 elnnz 12546 elznn 12552 pfxnd0 14660 nolt02o 27614 nosupbnd2lem1 27634 colrot1 28493 lnrot1 28557 lnrot2 28558 dfon2lem5 35782 dfon2lem6 35783 colinearperm3 36058 wl-exeq 37529 dvasin 37705 frege129d 43759 usgrexmpl2nb0 48026 usgrexmpl2nb3 48029 |
| Copyright terms: Public domain | W3C validator |