| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3orrot | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
| 2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3orcomb 1093 3mix2 1332 3mix3 1333 3orel2OLD 1487 eueq3 3682 tprot 4713 wemapsolem 9503 ssxr 11243 elnnz 12539 elznn 12545 pfxnd0 14653 nolt02o 27607 nosupbnd2lem1 27627 colrot1 28486 lnrot1 28550 lnrot2 28551 dfon2lem5 35775 dfon2lem6 35776 colinearperm3 36051 wl-exeq 37522 dvasin 37698 frege129d 43752 usgrexmpl2nb0 48022 usgrexmpl2nb3 48025 |
| Copyright terms: Public domain | W3C validator |