MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orrot Structured version   Visualization version   GIF version

Theorem 3orrot 1092
Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3orrot ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))

Proof of Theorem 3orrot
StepHypRef Expression
1 orcom 869 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜓𝜒) ∨ 𝜑))
2 3orass 1090 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
3 df-3or 1088 . 2 ((𝜓𝜒𝜑) ↔ ((𝜓𝜒) ∨ 𝜑))
41, 2, 33bitr4i 303 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-3or 1088
This theorem is referenced by:  3orcomb  1094  3mix2  1331  3mix3  1332  3orel2  1484  eueq3  3733  tprot  4774  wemapsolem  9619  ssxr  11359  elnnz  12649  elznn  12655  pfxnd0  14736  nolt02o  27758  nosupbnd2lem1  27778  colrot1  28585  lnrot1  28649  lnrot2  28650  dfon2lem5  35751  dfon2lem6  35752  colinearperm3  36027  wl-exeq  37488  dvasin  37664  frege129d  43725  usgrexmpl2nb0  47846  usgrexmpl2nb3  47849
  Copyright terms: Public domain W3C validator