MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orcomb Structured version   Visualization version   GIF version

Theorem 3orcomb 1093
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) (Proof shortened by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3orcomb ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Proof of Theorem 3orcomb
StepHypRef Expression
1 3orcoma 1092 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3orrot 1091 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  eueq3  3682  oneltri  6375  soseq  8138  swoso  8705  swrdnd  14619  elnnzs  28289  colcom  28485  legso  28526  lncom  28549  vonf1owev  35095  colinearperm1  36050  frege129d  43752  ordelordALT  44527  ordelordALTVD  44856  usgrexmpl2nb3  48025
  Copyright terms: Public domain W3C validator