MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orcomb Structured version   Visualization version   GIF version

Theorem 3orcomb 1076
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) (Proof shortened by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3orcomb ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Proof of Theorem 3orcomb
StepHypRef Expression
1 3orcoma 1075 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3orrot 1074 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2bitri 267 1 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 198  w3o 1068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-or 835  df-3or 1070
This theorem is referenced by:  eueq3  3618  swoso  8128  swrdnd  13828  colcom  26061  legso  26102  lncom  26125  soseq  32657  colinearperm1  33084  frege129d  39512  ordelordALT  40330  ordelordALTVD  40660
  Copyright terms: Public domain W3C validator