MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orcomb Structured version   Visualization version   GIF version

Theorem 3orcomb 1093
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) (Proof shortened by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3orcomb ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Proof of Theorem 3orcomb
StepHypRef Expression
1 3orcoma 1092 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3orrot 1091 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  eueq3  3665  oneltri  6349  soseq  8089  swoso  8656  swrdnd  14562  elnnzs  28325  colcom  28536  legso  28577  lncom  28600  vonf1owev  35152  colinearperm1  36106  frege129d  43855  ordelordALT  44629  ordelordALTVD  44958  chnerlem3  46981  usgrexmpl2nb3  48133
  Copyright terms: Public domain W3C validator