| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orcomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) (Proof shortened by Wolf Lammen, 8-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3orcomb | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orcoma 1092 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: eueq3 3665 oneltri 6349 soseq 8089 swoso 8656 swrdnd 14562 elnnzs 28325 colcom 28536 legso 28577 lncom 28600 vonf1owev 35152 colinearperm1 36106 frege129d 43855 ordelordALT 44629 ordelordALTVD 44958 chnerlem3 46981 usgrexmpl2nb3 48133 |
| Copyright terms: Public domain | W3C validator |