| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3orel13 1489 spimt 2390 euim 2616 ceqsalt 3494 spcimgft 3525 axprlem3OLD 5398 feldmfvelcdm 7076 limsssuc 7845 tfindsg 7856 findsg 7893 f1oweALT 7971 oaordi 8558 pssnn 9182 inf3lem2 9643 updjudhf 9945 cardlim 9986 ac10ct 10048 cardaleph 10103 cfub 10263 cfcoflem 10286 hsmexlem2 10441 zorn2lem7 10516 pwcfsdom 10597 grur1a 10833 genpcd 11020 supadd 12210 supmul 12214 zeo 12679 uzwo 12927 xrub 13328 iccsupr 13459 reuccatpfxs1lem 14764 climuni 15568 efgi2 19706 opnnei 23058 tgcn 23190 locfincf 23469 uffix 23859 alexsubALTlem2 23986 alexsubALT 23989 metrest 24463 causs 25250 ocin 31277 spanuni 31525 superpos 32335 bnj518 34917 nndivsub 36475 bj-spimtv 36812 bj-snmoore 37131 cover2 37739 metf1o 37779 sn-axprlem3 42268 intabssd 43543 relpfrlem 44978 stoweidlem62 46091 pgindnf 49580 |
| Copyright terms: Public domain | W3C validator |