![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 3orel13 1486 spimt 2384 euim 2612 ceqsalt 3505 axprlem3 5423 limsssuc 7843 tfindsg 7854 findsg 7894 f1oweALT 7963 oaordi 8552 pssnn 9174 pssnnOLD 9271 inf3lem2 9630 updjudhf 9932 cardlim 9973 ac10ct 10035 cardaleph 10090 cfub 10250 cfcoflem 10273 hsmexlem2 10428 zorn2lem7 10503 pwcfsdom 10584 grur1a 10820 genpcd 11007 supadd 12189 supmul 12193 zeo 12655 uzwo 12902 xrub 13298 iccsupr 13426 reuccatpfxs1lem 14703 climuni 15503 efgi2 19641 opnnei 22944 tgcn 23076 locfincf 23355 uffix 23745 alexsubALTlem2 23872 alexsubALT 23875 metrest 24353 causs 25146 ocin 30982 spanuni 31230 superpos 32040 bnj518 34361 nndivsub 35806 bj-spimtv 36136 bj-snmoore 36458 cover2 37047 metf1o 37087 sn-axprlem3 41501 intabssd 42733 stoweidlem62 45237 pgindnf 47923 |
Copyright terms: Public domain | W3C validator |