Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: spimt 2386 euim 2619 axprlem3 5343 limsssuc 7672 tfindsg 7682 findsg 7720 f1oweALT 7788 oaordi 8339 pssnn 8913 pssnnOLD 8969 inf3lem2 9317 trpredmintr 9409 frmin 9438 updjudhf 9620 cardlim 9661 ac10ct 9721 cardaleph 9776 cfub 9936 cfcoflem 9959 hsmexlem2 10114 zorn2lem7 10189 pwcfsdom 10270 grur1a 10506 genpcd 10693 supadd 11873 supmul 11877 zeo 12336 uzwo 12580 xrub 12975 iccsupr 13103 reuccatpfxs1lem 14387 climuni 15189 efgi2 19246 opnnei 22179 tgcn 22311 locfincf 22590 uffix 22980 alexsubALTlem2 23107 alexsubALT 23110 metrest 23586 causs 24367 ocin 29559 spanuni 29807 superpos 30617 bnj518 32766 3orel13 33562 nndivsub 34573 bj-spimtv 34903 bj-snmoore 35211 cover2 35799 metf1o 35840 sn-axprlem3 40114 intabssd 41024 stoweidlem62 43493 |
Copyright terms: Public domain | W3C validator |