Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 407 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: spimt 2386 euim 2619 axprlem3 5348 limsssuc 7697 tfindsg 7707 findsg 7746 f1oweALT 7815 oaordi 8377 pssnn 8951 pssnnOLD 9040 inf3lem2 9387 updjudhf 9689 cardlim 9730 ac10ct 9790 cardaleph 9845 cfub 10005 cfcoflem 10028 hsmexlem2 10183 zorn2lem7 10258 pwcfsdom 10339 grur1a 10575 genpcd 10762 supadd 11943 supmul 11947 zeo 12406 uzwo 12651 xrub 13046 iccsupr 13174 reuccatpfxs1lem 14459 climuni 15261 efgi2 19331 opnnei 22271 tgcn 22403 locfincf 22682 uffix 23072 alexsubALTlem2 23199 alexsubALT 23202 metrest 23680 causs 24462 ocin 29658 spanuni 29906 superpos 30716 bnj518 32866 3orel13 33660 nndivsub 34646 bj-spimtv 34976 bj-snmoore 35284 cover2 35872 metf1o 35913 sn-axprlem3 40186 intabssd 41126 stoweidlem62 43603 |
Copyright terms: Public domain | W3C validator |