| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3orel13 1489 spimt 2386 euim 2612 ceqsalt 3470 spcimgft 3501 axprlem3OLD 5366 feldmfvelcdm 7019 limsssuc 7780 tfindsg 7791 findsg 7827 f1oweALT 7904 oaordi 8461 pssnn 9078 inf3lem2 9519 updjudhf 9821 cardlim 9862 ac10ct 9922 cardaleph 9977 cfub 10137 cfcoflem 10160 hsmexlem2 10315 zorn2lem7 10390 pwcfsdom 10471 grur1a 10707 genpcd 10894 supadd 12087 supmul 12091 zeo 12556 uzwo 12806 xrub 13208 iccsupr 13339 reuccatpfxs1lem 14650 climuni 15456 efgi2 19635 opnnei 23033 tgcn 23165 locfincf 23444 uffix 23834 alexsubALTlem2 23961 alexsubALT 23964 metrest 24437 causs 25223 ocin 31271 spanuni 31519 superpos 32329 bnj518 34893 nndivsub 36490 bj-spimtv 36827 bj-snmoore 37146 cover2 37754 metf1o 37794 sn-axprlem3 42249 intabssd 43551 relpfrlem 44985 stoweidlem62 46099 pgindnf 49747 |
| Copyright terms: Public domain | W3C validator |