Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 410 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: spimt 2393 euim 2637 axprlem3 5297 limsssuc 7569 tfindsg 7579 findsg 7614 f1oweALT 7682 oaordi 8187 pssnn 8743 pssnnOLD 8779 inf3lem2 9130 updjudhf 9398 cardlim 9439 ac10ct 9499 cardaleph 9554 cfub 9714 cfcoflem 9737 hsmexlem2 9892 zorn2lem7 9967 pwcfsdom 10048 grur1a 10284 genpcd 10471 supadd 11650 supmul 11654 zeo 12112 uzwo 12356 xrub 12751 iccsupr 12879 reuccatpfxs1lem 14160 climuni 14962 efgi2 18923 opnnei 21825 tgcn 21957 locfincf 22236 uffix 22626 alexsubALTlem2 22753 alexsubALT 22756 metrest 23231 causs 24003 ocin 29183 spanuni 29431 superpos 30241 bnj518 32390 3orel13 33182 trpredmintr 33321 frmin 33338 nndivsub 34221 bj-spimtv 34538 bj-snmoore 34834 cover2 35458 metf1o 35499 sn-axprlem3 39729 intabssd 40628 stoweidlem62 43098 |
Copyright terms: Public domain | W3C validator |