| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3orel13 1489 spimt 2384 euim 2610 ceqsalt 3472 spcimgft 3503 axprlem3OLD 5370 feldmfvelcdm 7024 limsssuc 7790 tfindsg 7801 findsg 7837 f1oweALT 7914 oaordi 8471 pssnn 9092 inf3lem2 9544 updjudhf 9846 cardlim 9887 ac10ct 9947 cardaleph 10002 cfub 10162 cfcoflem 10185 hsmexlem2 10340 zorn2lem7 10415 pwcfsdom 10496 grur1a 10732 genpcd 10919 supadd 12111 supmul 12115 zeo 12580 uzwo 12830 xrub 13232 iccsupr 13363 reuccatpfxs1lem 14670 climuni 15477 efgi2 19622 opnnei 23023 tgcn 23155 locfincf 23434 uffix 23824 alexsubALTlem2 23951 alexsubALT 23954 metrest 24428 causs 25214 ocin 31258 spanuni 31506 superpos 32316 bnj518 34852 nndivsub 36430 bj-spimtv 36767 bj-snmoore 37086 cover2 37694 metf1o 37734 sn-axprlem3 42190 intabssd 43492 relpfrlem 44927 stoweidlem62 46044 pgindnf 49702 |
| Copyright terms: Public domain | W3C validator |