| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3orel13 1489 spimt 2388 euim 2614 ceqsalt 3471 spcimgft 3500 axprlem3OLD 5368 feldmfvelcdm 7025 limsssuc 7786 tfindsg 7797 findsg 7833 f1oweALT 7910 oaordi 8467 pssnn 9085 inf3lem2 9526 updjudhf 9831 cardlim 9872 ac10ct 9932 cardaleph 9987 cfub 10147 cfcoflem 10170 hsmexlem2 10325 zorn2lem7 10400 pwcfsdom 10481 grur1a 10717 genpcd 10904 supadd 12097 supmul 12101 zeo 12565 uzwo 12811 xrub 13213 iccsupr 13344 reuccatpfxs1lem 14655 climuni 15461 efgi2 19639 opnnei 23036 tgcn 23168 locfincf 23447 uffix 23837 alexsubALTlem2 23964 alexsubALT 23967 metrest 24440 causs 25226 ocin 31278 spanuni 31526 superpos 32336 bnj518 34919 nndivsub 36522 bj-spimtv 36859 bj-snmoore 37178 cover2 37776 metf1o 37816 sn-axprlem3 42336 intabssd 43637 relpfrlem 45071 stoweidlem62 46185 pgindnf 49842 |
| Copyright terms: Public domain | W3C validator |