| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3orel13 1489 spimt 2385 euim 2611 ceqsalt 3484 spcimgft 3515 axprlem3OLD 5386 feldmfvelcdm 7061 limsssuc 7829 tfindsg 7840 findsg 7876 f1oweALT 7954 oaordi 8513 pssnn 9138 inf3lem2 9589 updjudhf 9891 cardlim 9932 ac10ct 9994 cardaleph 10049 cfub 10209 cfcoflem 10232 hsmexlem2 10387 zorn2lem7 10462 pwcfsdom 10543 grur1a 10779 genpcd 10966 supadd 12158 supmul 12162 zeo 12627 uzwo 12877 xrub 13279 iccsupr 13410 reuccatpfxs1lem 14718 climuni 15525 efgi2 19662 opnnei 23014 tgcn 23146 locfincf 23425 uffix 23815 alexsubALTlem2 23942 alexsubALT 23945 metrest 24419 causs 25205 ocin 31232 spanuni 31480 superpos 32290 bnj518 34883 nndivsub 36452 bj-spimtv 36789 bj-snmoore 37108 cover2 37716 metf1o 37756 sn-axprlem3 42212 intabssd 43515 relpfrlem 44950 stoweidlem62 46067 pgindnf 49709 |
| Copyright terms: Public domain | W3C validator |