![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 3orel13 1485 spimt 2388 euim 2614 ceqsalt 3512 spcimgft 3545 axprlem3OLD 5433 feldmfvelcdm 7105 limsssuc 7870 tfindsg 7881 findsg 7919 f1oweALT 7995 oaordi 8582 pssnn 9206 inf3lem2 9666 updjudhf 9968 cardlim 10009 ac10ct 10071 cardaleph 10126 cfub 10286 cfcoflem 10309 hsmexlem2 10464 zorn2lem7 10539 pwcfsdom 10620 grur1a 10856 genpcd 11043 supadd 12233 supmul 12237 zeo 12701 uzwo 12950 xrub 13350 iccsupr 13478 reuccatpfxs1lem 14780 climuni 15584 efgi2 19757 opnnei 23143 tgcn 23275 locfincf 23554 uffix 23944 alexsubALTlem2 24071 alexsubALT 24074 metrest 24552 causs 25345 ocin 31324 spanuni 31572 superpos 32382 bnj518 34878 nndivsub 36439 bj-spimtv 36776 bj-snmoore 37095 cover2 37701 metf1o 37741 sn-axprlem3 42234 intabssd 43508 stoweidlem62 46017 pgindnf 48946 |
Copyright terms: Public domain | W3C validator |