![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 3orel13 1486 spimt 2394 euim 2620 ceqsalt 3523 spcimgft 3558 axprlem3 5443 feldmfvelcdm 7120 limsssuc 7887 tfindsg 7898 findsg 7937 f1oweALT 8013 oaordi 8602 pssnn 9234 inf3lem2 9698 updjudhf 10000 cardlim 10041 ac10ct 10103 cardaleph 10158 cfub 10318 cfcoflem 10341 hsmexlem2 10496 zorn2lem7 10571 pwcfsdom 10652 grur1a 10888 genpcd 11075 supadd 12263 supmul 12267 zeo 12729 uzwo 12976 xrub 13374 iccsupr 13502 reuccatpfxs1lem 14794 climuni 15598 efgi2 19767 opnnei 23149 tgcn 23281 locfincf 23560 uffix 23950 alexsubALTlem2 24077 alexsubALT 24080 metrest 24558 causs 25351 ocin 31328 spanuni 31576 superpos 32386 bnj518 34862 nndivsub 36423 bj-spimtv 36760 bj-snmoore 37079 cover2 37675 metf1o 37715 sn-axprlem3 42210 intabssd 43481 stoweidlem62 45983 pgindnf 48808 |
Copyright terms: Public domain | W3C validator |