| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9r | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sylan9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9r | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9r 78 | . 2 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3orel13 1489 spimt 2384 euim 2610 ceqsalt 3481 spcimgft 3512 axprlem3OLD 5383 feldmfvelcdm 7058 limsssuc 7826 tfindsg 7837 findsg 7873 f1oweALT 7951 oaordi 8510 pssnn 9132 inf3lem2 9582 updjudhf 9884 cardlim 9925 ac10ct 9987 cardaleph 10042 cfub 10202 cfcoflem 10225 hsmexlem2 10380 zorn2lem7 10455 pwcfsdom 10536 grur1a 10772 genpcd 10959 supadd 12151 supmul 12155 zeo 12620 uzwo 12870 xrub 13272 iccsupr 13403 reuccatpfxs1lem 14711 climuni 15518 efgi2 19655 opnnei 23007 tgcn 23139 locfincf 23418 uffix 23808 alexsubALTlem2 23935 alexsubALT 23938 metrest 24412 causs 25198 ocin 31225 spanuni 31473 superpos 32283 bnj518 34876 nndivsub 36445 bj-spimtv 36782 bj-snmoore 37101 cover2 37709 metf1o 37749 sn-axprlem3 42205 intabssd 43508 relpfrlem 44943 stoweidlem62 46060 pgindnf 49705 |
| Copyright terms: Public domain | W3C validator |