MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orel3 Structured version   Visualization version   GIF version

Theorem 3orel3 1485
Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.)
Assertion
Ref Expression
3orel3 𝜒 → ((𝜑𝜓𝜒) → (𝜑𝜓)))

Proof of Theorem 3orel3
StepHypRef Expression
1 df-3or 1087 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 orel2 888 . 2 𝜒 → (((𝜑𝜓) ∨ 𝜒) → (𝜑𝜓)))
31, 2syl5bi 241 1 𝜒 → ((𝜑𝜓𝜒) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  ttrcltr  9474  3orel13  33660  nolesgn2o  33874  nosep2o  33885  noinfbnd1lem5  33930  noinfbnd2lem1  33933
  Copyright terms: Public domain W3C validator