Proof of Theorem nodenselem8
Step | Hyp | Ref
| Expression |
1 | | nodenselem5 33891 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) |
2 | 1 | exp32 421 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( bday
‘𝐴) = ( bday ‘𝐵) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)))) |
3 | 2 | 3impia 1116 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴))) |
4 | | sltval2 33859 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
5 | 4 | 3adant3 1131 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
6 | | fvex 6787 |
. . . . . 6
⊢ (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
7 | | fvex 6787 |
. . . . . 6
⊢ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
8 | 6, 7 | brtp 33717 |
. . . . 5
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ↔ (((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
9 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (( bday ‘𝐴) = ( bday
‘𝐵) →
(∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) ↔
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵))) |
10 | 9 | biimpd 228 |
. . . . . . . . . . . 12
⊢ (( bday ‘𝐴) = ( bday
‘𝐵) →
(∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵))) |
11 | | nosgnn0 33861 |
. . . . . . . . . . . . . . 15
⊢ ¬
∅ ∈ {1o, 2o} |
12 | | nofnbday 33855 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈
No → 𝐵 Fn
( bday ‘𝐵)) |
13 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 Fn ( bday
‘𝐵) ∧
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵)) →
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ ran 𝐵) |
14 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ ran 𝐵 ↔ ∅ ∈ ran 𝐵)) |
15 | 13, 14 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 Fn ( bday
‘𝐵) ∧
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵)) →
((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ∅ ∈ ran 𝐵)) |
16 | 12, 15 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵)) →
((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ∅ ∈ ran 𝐵)) |
17 | | norn 33854 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈
No → ran 𝐵
⊆ {1o, 2o}) |
18 | 17 | sseld 3920 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈
No → (∅ ∈ ran 𝐵 → ∅ ∈ {1o,
2o})) |
19 | 18 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵)) →
(∅ ∈ ran 𝐵
→ ∅ ∈ {1o, 2o})) |
20 | 16, 19 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵)) →
((𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ∅ ∈
{1o, 2o})) |
21 | 11, 20 | mtoi 198 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵)) →
¬ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
22 | 21 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈
No → (∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵) →
¬ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅)) |
23 | 22 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐵) →
¬ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅)) |
24 | 10, 23 | syl9r 78 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( bday
‘𝐴) = ( bday ‘𝐵) → (∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
¬ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅))) |
25 | 24 | 3impia 1116 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
¬ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅)) |
26 | 25 | imp 407 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
¬ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
27 | 26 | intnand 489 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
¬ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅)) |
28 | | nofnbday 33855 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈
No → 𝐴 Fn
( bday ‘𝐴)) |
29 | | fnfvelrn 6958 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 Fn ( bday
‘𝐴) ∧
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
(𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ ran 𝐴) |
30 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ ran 𝐴 ↔ ∅ ∈ ran 𝐴)) |
31 | 29, 30 | syl5ibcom 244 |
. . . . . . . . . . . . 13
⊢ ((𝐴 Fn ( bday
‘𝐴) ∧
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ∅ ∈ ran 𝐴)) |
32 | 28, 31 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ∅ ∈ ran 𝐴)) |
33 | | norn 33854 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈
No → ran 𝐴
⊆ {1o, 2o}) |
34 | 33 | sseld 3920 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈
No → (∅ ∈ ran 𝐴 → ∅ ∈ {1o,
2o})) |
35 | 34 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
(∅ ∈ ran 𝐴
→ ∅ ∈ {1o, 2o})) |
36 | 32, 35 | syld 47 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ → ∅ ∈
{1o, 2o})) |
37 | 11, 36 | mtoi 198 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
¬ (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
38 | 37 | 3ad2antl1 1184 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
¬ (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
39 | 38 | intnanrd 490 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
¬ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) |
40 | | 3orel13 33660 |
. . . . . . . 8
⊢ ((¬
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∧ ¬ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → ((((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
41 | 27, 39, 40 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) ∧ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) →
((((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
42 | 41 | ex 413 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
((((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)))) |
43 | 42 | com23 86 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → ((((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) → (∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)))) |
44 | 8, 43 | syl5bi 241 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)))) |
45 | 5, 44 | sylbid 239 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 → (∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)))) |
46 | 3, 45 | mpdd 43 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
47 | | 3mix2 1330 |
. . . 4
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
48 | 47, 8 | sylibr 233 |
. . 3
⊢ (((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
49 | 48, 5 | syl5ibr 245 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) → 𝐴 <s 𝐵)) |
50 | 46, 49 | impbid 211 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 ↔ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |