|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3ori | Structured version Visualization version GIF version | ||
| Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| 3ori.1 | ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) | 
| Ref | Expression | 
|---|---|
| 3ori | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ioran 985 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 3ori.1 | . . . 4 ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) | |
| 3 | df-3or 1087 | . . . 4 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ∨ 𝜒) | 
| 5 | 4 | ori 861 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → 𝜒) | 
| 6 | 1, 5 | sylbir 235 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 | 
| This theorem is referenced by: rankxplim3 9922 | 
| Copyright terms: Public domain | W3C validator |