Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ori | Structured version Visualization version GIF version |
Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
Ref | Expression |
---|---|
3ori.1 | ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) |
Ref | Expression |
---|---|
3ori | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 981 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 3ori.1 | . . . 4 ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) | |
3 | df-3or 1087 | . . . 4 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ∨ 𝜒) |
5 | 4 | ori 858 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → 𝜒) |
6 | 1, 5 | sylbir 234 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 |
This theorem is referenced by: rankxplim3 9639 |
Copyright terms: Public domain | W3C validator |