Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jao | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3jao | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jao 958 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) | |
2 | df-3or 1087 | . . . 4 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜃)) | |
3 | jao 958 | . . . 4 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜃 → 𝜓) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓))) | |
4 | 2, 3 | syl7bi 254 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜃 → 𝜓) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓))) |
5 | 1, 4 | syl6 35 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜃 → 𝜓) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)))) |
6 | 5 | 3imp 1110 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∨ w3o 1085 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: 3jaob 1425 3jaoi 1426 3jaod 1427 |
Copyright terms: Public domain | W3C validator |