| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jao | Structured version Visualization version GIF version | ||
| Description: Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3jao | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jao 963 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) | |
| 2 | df-3or 1088 | . . . 4 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜃)) | |
| 3 | jao 963 | . . . 4 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜃 → 𝜓) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓))) | |
| 4 | 2, 3 | syl7bi 255 | . . 3 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜃 → 𝜓) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓))) |
| 5 | 1, 4 | syl6 35 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜃 → 𝜓) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)))) |
| 6 | 5 | 3imp 1111 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 ∨ w3o 1086 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 |
| This theorem is referenced by: 3jaobOLD 1429 3jaoi 1430 3jaod 1431 |
| Copyright terms: Public domain | W3C validator |