MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an23an Structured version   Visualization version   GIF version

Theorem syl2an23an 1425
Description: Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.)
Hypotheses
Ref Expression
syl2an23an.1 (𝜑𝜓)
syl2an23an.2 (𝜑𝜒)
syl2an23an.3 ((𝜃𝜑) → 𝜏)
syl2an23an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an23an ((𝜃𝜑) → 𝜂)

Proof of Theorem syl2an23an
StepHypRef Expression
1 syl2an23an.1 . . 3 (𝜑𝜓)
2 syl2an23an.2 . . 3 (𝜑𝜒)
3 syl2an23an.3 . . 3 ((𝜃𝜑) → 𝜏)
4 syl2an23an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl2an3an 1424 . 2 ((𝜑 ∧ (𝜃𝜑)) → 𝜂)
65anabss7 673 1 ((𝜃𝜑) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  nf1const  7238  uztrn  12747  ssfzo12bi  13658  modsumfzodifsn  13848  facdiv  14191  swrdnd  14559  cshwidxmod  14707  nndivdvds  16169  pcz  16790  fldivp1  16806  uffix  23834  relogbmul  26712  umgrvad2edg  29189  crctcshwlkn0  29797  satfsschain  35396  satfdm  35401  satffunlem2  35440  modmkpkne  47391  pgn4cyclex  48156
  Copyright terms: Public domain W3C validator