MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an23an Structured version   Visualization version   GIF version

Theorem syl2an23an 1420
Description: Deduction related to syl3an 1157 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.)
Hypotheses
Ref Expression
syl2an23an.1 (𝜑𝜓)
syl2an23an.2 (𝜑𝜒)
syl2an23an.3 ((𝜃𝜑) → 𝜏)
syl2an23an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an23an ((𝜃𝜑) → 𝜂)

Proof of Theorem syl2an23an
StepHypRef Expression
1 syl2an23an.1 . . 3 (𝜑𝜓)
2 syl2an23an.2 . . 3 (𝜑𝜒)
3 syl2an23an.3 . . 3 ((𝜃𝜑) → 𝜏)
4 syl2an23an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl2an3an 1419 . 2 ((𝜑 ∧ (𝜃𝜑)) → 𝜂)
65anabss7 671 1 ((𝜃𝜑) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  nf1const  7319  uztrn  12894  ssfzo12bi  13783  modsumfzodifsn  13966  facdiv  14306  swrdnd  14664  cshwidxmod  14813  nndivdvds  16267  pcz  16885  fldivp1  16901  uffix  23919  relogbmul  26808  umgrvad2edg  29152  crctcshwlkn0  29758  satfsschain  35194  satfdm  35199  satffunlem2  35238
  Copyright terms: Public domain W3C validator