| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an23an | Structured version Visualization version GIF version | ||
| Description: Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
| syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an23an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an23an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
| 4 | syl2an23an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl2an3an 1424 | . 2 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜑)) → 𝜂) |
| 6 | 5 | anabss7 673 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nf1const 7282 uztrn 12818 ssfzo12bi 13729 modsumfzodifsn 13916 facdiv 14259 swrdnd 14626 cshwidxmod 14775 nndivdvds 16238 pcz 16859 fldivp1 16875 uffix 23815 relogbmul 26694 umgrvad2edg 29147 crctcshwlkn0 29758 satfsschain 35358 satfdm 35363 satffunlem2 35402 modmkpkne 47366 pgn4cyclex 48120 |
| Copyright terms: Public domain | W3C validator |