| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an23an | Structured version Visualization version GIF version | ||
| Description: Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
| syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an23an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an23an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
| 4 | syl2an23an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl2an3an 1423 | . 2 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜑)) → 𝜂) |
| 6 | 5 | anabss7 673 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nf1const 7292 uztrn 12862 ssfzo12bi 13766 modsumfzodifsn 13951 facdiv 14293 swrdnd 14659 cshwidxmod 14808 nndivdvds 16266 pcz 16886 fldivp1 16902 uffix 23844 relogbmul 26723 umgrvad2edg 29124 crctcshwlkn0 29735 satfsschain 35307 satfdm 35312 satffunlem2 35351 |
| Copyright terms: Public domain | W3C validator |