Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2an23an | Structured version Visualization version GIF version |
Description: Deduction related to syl3an 1158 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
Ref | Expression |
---|---|
syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an23an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an23an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
4 | syl2an23an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl2an3an 1420 | . 2 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜑)) → 𝜂) |
6 | 5 | anabss7 669 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: nf1const 7156 uztrn 12529 ssfzo12bi 13410 modsumfzodifsn 13592 facdiv 13929 swrdnd 14295 cshwidxmod 14444 nndivdvds 15900 pcz 16510 fldivp1 16526 uffix 22980 relogbmul 25832 umgrvad2edg 27483 crctcshwlkn0 28087 satfsschain 33226 satfdm 33231 satffunlem2 33270 |
Copyright terms: Public domain | W3C validator |