MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an23an Structured version   Visualization version   GIF version

Theorem syl2an23an 1422
Description: Deduction related to syl3an 1159 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.)
Hypotheses
Ref Expression
syl2an23an.1 (𝜑𝜓)
syl2an23an.2 (𝜑𝜒)
syl2an23an.3 ((𝜃𝜑) → 𝜏)
syl2an23an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an23an ((𝜃𝜑) → 𝜂)

Proof of Theorem syl2an23an
StepHypRef Expression
1 syl2an23an.1 . . 3 (𝜑𝜓)
2 syl2an23an.2 . . 3 (𝜑𝜒)
3 syl2an23an.3 . . 3 ((𝜃𝜑) → 𝜏)
4 syl2an23an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl2an3an 1421 . 2 ((𝜑 ∧ (𝜃𝜑)) → 𝜂)
65anabss7 670 1 ((𝜃𝜑) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  nf1const  7185  uztrn  12609  ssfzo12bi  13491  modsumfzodifsn  13673  facdiv  14010  swrdnd  14376  cshwidxmod  14525  nndivdvds  15981  pcz  16591  fldivp1  16607  uffix  23081  relogbmul  25936  umgrvad2edg  27589  crctcshwlkn0  28195  satfsschain  33335  satfdm  33340  satffunlem2  33379
  Copyright terms: Public domain W3C validator