| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an23an | Structured version Visualization version GIF version | ||
| Description: Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
| syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an23an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an23an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
| 4 | syl2an23an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl2an3an 1424 | . 2 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜑)) → 𝜂) |
| 6 | 5 | anabss7 673 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nf1const 7238 uztrn 12747 ssfzo12bi 13658 modsumfzodifsn 13848 facdiv 14191 swrdnd 14559 cshwidxmod 14707 nndivdvds 16169 pcz 16790 fldivp1 16806 uffix 23834 relogbmul 26712 umgrvad2edg 29189 crctcshwlkn0 29797 satfsschain 35396 satfdm 35401 satffunlem2 35440 modmkpkne 47391 pgn4cyclex 48156 |
| Copyright terms: Public domain | W3C validator |