MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an23an Structured version   Visualization version   GIF version

Theorem syl2an23an 1422
Description: Deduction related to syl3an 1159 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.)
Hypotheses
Ref Expression
syl2an23an.1 (𝜑𝜓)
syl2an23an.2 (𝜑𝜒)
syl2an23an.3 ((𝜃𝜑) → 𝜏)
syl2an23an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an23an ((𝜃𝜑) → 𝜂)

Proof of Theorem syl2an23an
StepHypRef Expression
1 syl2an23an.1 . . 3 (𝜑𝜓)
2 syl2an23an.2 . . 3 (𝜑𝜒)
3 syl2an23an.3 . . 3 ((𝜃𝜑) → 𝜏)
4 syl2an23an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl2an3an 1421 . 2 ((𝜑 ∧ (𝜃𝜑)) → 𝜂)
65anabss7 670 1 ((𝜃𝜑) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  nf1const  7178  uztrn  12598  ssfzo12bi  13480  modsumfzodifsn  13662  facdiv  13999  swrdnd  14365  cshwidxmod  14514  nndivdvds  15970  pcz  16580  fldivp1  16596  uffix  23070  relogbmul  25925  umgrvad2edg  27578  crctcshwlkn0  28183  satfsschain  33323  satfdm  33328  satffunlem2  33367
  Copyright terms: Public domain W3C validator