MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an23an Structured version   Visualization version   GIF version

Theorem syl2an23an 1421
Description: Deduction related to syl3an 1158 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.)
Hypotheses
Ref Expression
syl2an23an.1 (𝜑𝜓)
syl2an23an.2 (𝜑𝜒)
syl2an23an.3 ((𝜃𝜑) → 𝜏)
syl2an23an.4 ((𝜓𝜒𝜏) → 𝜂)
Assertion
Ref Expression
syl2an23an ((𝜃𝜑) → 𝜂)

Proof of Theorem syl2an23an
StepHypRef Expression
1 syl2an23an.1 . . 3 (𝜑𝜓)
2 syl2an23an.2 . . 3 (𝜑𝜒)
3 syl2an23an.3 . . 3 ((𝜃𝜑) → 𝜏)
4 syl2an23an.4 . . 3 ((𝜓𝜒𝜏) → 𝜂)
51, 2, 3, 4syl2an3an 1420 . 2 ((𝜑 ∧ (𝜃𝜑)) → 𝜂)
65anabss7 669 1 ((𝜃𝜑) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  nf1const  7156  uztrn  12529  ssfzo12bi  13410  modsumfzodifsn  13592  facdiv  13929  swrdnd  14295  cshwidxmod  14444  nndivdvds  15900  pcz  16510  fldivp1  16526  uffix  22980  relogbmul  25832  umgrvad2edg  27483  crctcshwlkn0  28087  satfsschain  33226  satfdm  33231  satffunlem2  33270
  Copyright terms: Public domain W3C validator