Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2an23an | Structured version Visualization version GIF version |
Description: Deduction related to syl3an 1159 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
Ref | Expression |
---|---|
syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an23an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an23an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
4 | syl2an23an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | syl2an3an 1421 | . 2 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜑)) → 𝜂) |
6 | 5 | anabss7 670 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: nf1const 7185 uztrn 12609 ssfzo12bi 13491 modsumfzodifsn 13673 facdiv 14010 swrdnd 14376 cshwidxmod 14525 nndivdvds 15981 pcz 16591 fldivp1 16607 uffix 23081 relogbmul 25936 umgrvad2edg 27589 crctcshwlkn0 28195 satfsschain 33335 satfdm 33340 satffunlem2 33379 |
Copyright terms: Public domain | W3C validator |