| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2an23an | Structured version Visualization version GIF version | ||
| Description: Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| syl2an23an.1 | ⊢ (𝜑 → 𝜓) |
| syl2an23an.2 | ⊢ (𝜑 → 𝜒) |
| syl2an23an.3 | ⊢ ((𝜃 ∧ 𝜑) → 𝜏) |
| syl2an23an.4 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl2an23an | ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an23an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl2an23an.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl2an23an.3 | . . 3 ⊢ ((𝜃 ∧ 𝜑) → 𝜏) | |
| 4 | syl2an23an.4 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | syl2an3an 1424 | . 2 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜑)) → 𝜂) |
| 6 | 5 | anabss7 673 | 1 ⊢ ((𝜃 ∧ 𝜑) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nf1const 7245 uztrn 12771 ssfzo12bi 13682 modsumfzodifsn 13869 facdiv 14212 swrdnd 14579 cshwidxmod 14727 nndivdvds 16190 pcz 16811 fldivp1 16827 uffix 23824 relogbmul 26703 umgrvad2edg 29176 crctcshwlkn0 29784 satfsschain 35336 satfdm 35341 satffunlem2 35380 modmkpkne 47346 pgn4cyclex 48111 |
| Copyright terms: Public domain | W3C validator |