Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ori | Structured version Visualization version GIF version |
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
ori.1 | ⊢ (𝜑 ∨ 𝜓) |
Ref | Expression |
---|---|
ori | ⊢ (¬ 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ori.1 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
2 | df-or 844 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (¬ 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: 3ori 1422 mtpor 1774 fvrn0 6784 eliman0 6791 onuninsuci 7662 omelon2 7700 infensuc 8891 rankxpsuc 9571 cardlim 9661 alephreg 10269 tskcard 10468 sinhalfpilem 25525 sltres 33792 |
Copyright terms: Public domain | W3C validator |