MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ori Structured version   Visualization version   GIF version

Theorem ori 860
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
ori.1 (𝜑𝜓)
Assertion
Ref Expression
ori 𝜑𝜓)

Proof of Theorem ori
StepHypRef Expression
1 ori.1 . 2 (𝜑𝜓)
2 df-or 847 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbi 230 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  3ori  1424  mtpor  1768  fvrn0  6950  eliman0  6960  onuninsuci  7877  omelon2  7916  infensuc  9221  rankxpsuc  9951  cardlim  10041  alephreg  10651  tskcard  10850  sinhalfpilem  26523  sltres  27725
  Copyright terms: Public domain W3C validator