| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ori | Structured version Visualization version GIF version | ||
| Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| ori.1 | ⊢ (𝜑 ∨ 𝜓) |
| Ref | Expression |
|---|---|
| ori | ⊢ (¬ 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ori.1 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
| 2 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (¬ 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: 3ori 1426 mtpor 1770 fvrn0 6911 eliman0 6921 onuninsuci 7840 omelon2 7879 infensuc 9174 rankxpsuc 9901 cardlim 9991 alephreg 10601 tskcard 10800 sinhalfpilem 26429 sltres 27631 |
| Copyright terms: Public domain | W3C validator |