MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ori Structured version   Visualization version   GIF version

Theorem ori 861
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
ori.1 (𝜑𝜓)
Assertion
Ref Expression
ori 𝜑𝜓)

Proof of Theorem ori
StepHypRef Expression
1 ori.1 . 2 (𝜑𝜓)
2 df-or 848 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbi 230 1 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  3ori  1423  mtpor  1767  fvrn0  6937  eliman0  6947  onuninsuci  7861  omelon2  7900  infensuc  9194  rankxpsuc  9920  cardlim  10010  alephreg  10620  tskcard  10819  sinhalfpilem  26520  sltres  27722
  Copyright terms: Public domain W3C validator