MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4exdistrv Structured version   Visualization version   GIF version

Theorem 4exdistrv 1961
Description: Distribute two pairs of existential quantifiers (over disjoint variables) over a conjunction. For a version with fewer disjoint variable conditions but requiring more axioms, see ee4anv 2351. (Contributed by BJ, 5-Jan-2023.)
Assertion
Ref Expression
4exdistrv (∃𝑥𝑧𝑦𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Distinct variable groups:   𝜑,𝑤   𝜑,𝑧   𝜓,𝑦   𝜓,𝑥   𝑦,𝑤   𝑦,𝑧   𝑥,𝑤   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem 4exdistrv
StepHypRef Expression
1 exdistrv 1960 . . 3 (∃𝑦𝑤(𝜑𝜓) ↔ (∃𝑦𝜑 ∧ ∃𝑤𝜓))
212exbii 1852 . 2 (∃𝑥𝑧𝑦𝑤(𝜑𝜓) ↔ ∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓))
3 exdistrv 1960 . 2 (∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
42, 3bitri 274 1 (∃𝑥𝑧𝑦𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  cgsex4g  3466  cgsex4gOLD  3467  3oalem3  29927
  Copyright terms: Public domain W3C validator