MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ee4anv Structured version   Visualization version   GIF version

Theorem ee4anv 2353
Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv 1963. (Contributed by NM, 31-Jul-1995.)
Assertion
Ref Expression
ee4anv (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Distinct variable groups:   𝜑,𝑧   𝜑,𝑤   𝜓,𝑥   𝜓,𝑦   𝑦,𝑧   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem ee4anv
StepHypRef Expression
1 excom 2169 . . 3 (∃𝑦𝑧𝑤(𝜑𝜓) ↔ ∃𝑧𝑦𝑤(𝜑𝜓))
21exbii 1854 . 2 (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ ∃𝑥𝑧𝑦𝑤(𝜑𝜓))
3 eeanv 2351 . . 3 (∃𝑦𝑤(𝜑𝜓) ↔ (∃𝑦𝜑 ∧ ∃𝑤𝜓))
432exbii 1855 . 2 (∃𝑥𝑧𝑦𝑤(𝜑𝜓) ↔ ∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓))
5 eeanv 2351 . 2 (∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
62, 4, 53bitri 300 1 (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-10 2144  ax-11 2161  ax-12 2178
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ex 1787  df-nf 1791
This theorem is referenced by:  5oalem7  29587  elfuns  33847
  Copyright terms: Public domain W3C validator