MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ee4anv Structured version   Visualization version   GIF version

Theorem ee4anv 2351
Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv 1957. (Contributed by NM, 31-Jul-1995.) Remove disjoint variable conditions on 𝑦, 𝑧 and 𝑥, 𝑤. (Revised by Eric Schmidt, 26-Oct-2025.)
Assertion
Ref Expression
ee4anv (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Distinct variable groups:   𝜑,𝑧   𝜑,𝑤   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem ee4anv
StepHypRef Expression
1 excom 2165 . . 3 (∃𝑦𝑧𝑤(𝜑𝜓) ↔ ∃𝑧𝑦𝑤(𝜑𝜓))
21exbii 1849 . 2 (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ ∃𝑥𝑧𝑦𝑤(𝜑𝜓))
3 eeanv 2349 . . 3 (∃𝑦𝑤(𝜑𝜓) ↔ (∃𝑦𝜑 ∧ ∃𝑤𝜓))
432exbii 1850 . 2 (∃𝑥𝑧𝑦𝑤(𝜑𝜓) ↔ ∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓))
5 nfv 1915 . . . 4 𝑧𝜑
65nfex 2325 . . 3 𝑧𝑦𝜑
7 nfv 1915 . . . 4 𝑥𝜓
87nfex 2325 . . 3 𝑥𝑤𝜓
96, 8eean 2348 . 2 (∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
102, 4, 93bitri 297 1 (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  5oalem7  31640  elfuns  35957
  Copyright terms: Public domain W3C validator