![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1953 and 19.42v 1957. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2345. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1958 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1953 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: 4exdistrv 1960 eu6lem 2567 2mo2 2643 reeanv 3226 cgsex2g 3519 cgsex4g 3520 cgsex4gOLD 3521 cgsex4gOLDOLD 3522 spc2egv 3589 spc2ed 3591 dtruALT2 5368 exexneq 5434 dtruOLD 5441 copsex2t 5492 copsex2gOLD 5494 xpnz 6158 fununi 6623 frrlem4 8276 wfrlem4OLD 8314 wfrfunOLD 8321 tfrlem7 8385 ener 8999 domtr 9005 unen 9048 undom 9061 undomOLD 9062 sbthlem10 9094 mapen 9143 entrfil 9190 domtrfil 9197 sbthfilem 9203 infxpenc2 10019 fseqen 10024 dfac5lem4 10123 zorn2lem6 10498 fpwwe2lem11 10638 genpnnp 11002 hashfacen 14415 hashfacenOLD 14416 summo 15665 ntrivcvgmul 15850 prodmo 15882 iscatd2 17627 catcone0 17633 gictr 19151 gsumval3eu 19774 ptbasin 23088 txcls 23115 txbasval 23117 hmphtr 23294 reconn 24351 phtpcer 24518 pcohtpy 24543 mbfi1flimlem 25247 mbfmullem 25250 itg2add 25284 brabgaf 31875 pconnconn 34291 txsconn 34301 neibastop1 35330 bj-unexg 36005 copsex2d 36106 riscer 36942 disjecxrn 37345 br1cosscnvxrn 37430 rictr 41179 fnchoice 43795 fzisoeu 44089 stoweidlem35 44830 elsprel 46222 |
Copyright terms: Public domain | W3C validator |