| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version | ||
| Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1950 and 19.42v 1954. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2351. (Contributed by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1955 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.41v 1950 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 4exdistrv 1957 eu6lem 2570 2mo2 2644 reeanv 3205 cgsex2g 3483 cgsex4g 3484 cgsex4gOLD 3485 spc2egv 3550 spc2ed 3552 dtruALT2 5310 exexneq 5379 copsex2t 5435 xpnz 6111 fununi 6561 frrlem4 8225 tfrlem7 8308 ener 8930 domtr 8936 unen 8974 undom 8985 sbthlem10 9016 mapen 9061 entrfil 9101 domtrfil 9108 sbthfilem 9114 infxpenc2 9920 fseqen 9925 dfac5lem4 10024 dfac5lem4OLD 10026 zorn2lem6 10399 fpwwe2lem11 10539 genpnnp 10903 hashfacen 14363 summo 15626 ntrivcvgmul 15811 prodmo 15845 iscatd2 17589 catcone0 17595 gictr 19190 gsumval3eu 19818 ptbasin 23493 txcls 23520 txbasval 23522 hmphtr 23699 reconn 24745 phtpcer 24922 pcohtpy 24948 mbfi1flimlem 25651 mbfmullem 25654 itg2add 25688 brabgaf 32591 pconnconn 35296 txsconn 35306 neibastop1 36424 bj-unexg 37103 copsex2d 37204 riscer 38048 dmxrn 38431 disjecxrn 38456 br1cosscnvxrn 38596 dmqsblocks 38971 rictr 42638 fnchoice 45150 fzisoeu 45425 stoweidlem35 46157 elsprel 47599 grictr 48047 |
| Copyright terms: Public domain | W3C validator |