| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version | ||
| Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1950 and 19.42v 1954. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2349. (Contributed by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1955 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.41v 1950 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 4exdistrv 1957 eu6lem 2568 2mo2 2642 reeanv 3204 cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 spc2egv 3554 spc2ed 3556 dtruALT2 5308 exexneq 5377 copsex2t 5432 xpnz 6106 fununi 6556 frrlem4 8219 tfrlem7 8302 ener 8923 domtr 8929 unen 8967 undom 8978 sbthlem10 9009 mapen 9054 entrfil 9094 domtrfil 9101 sbthfilem 9107 infxpenc2 9910 fseqen 9915 dfac5lem4 10014 dfac5lem4OLD 10016 zorn2lem6 10389 fpwwe2lem11 10529 genpnnp 10893 hashfacen 14358 summo 15621 ntrivcvgmul 15806 prodmo 15840 iscatd2 17584 catcone0 17590 gictr 19186 gsumval3eu 19814 ptbasin 23490 txcls 23517 txbasval 23519 hmphtr 23696 reconn 24742 phtpcer 24919 pcohtpy 24945 mbfi1flimlem 25648 mbfmullem 25651 itg2add 25685 brabgaf 32584 pconnconn 35263 txsconn 35273 neibastop1 36392 bj-unexg 37071 copsex2d 37172 riscer 38027 dmxrn 38405 disjecxrn 38420 br1cosscnvxrn 38510 dmqsblocks 38890 rictr 42552 fnchoice 45065 fzisoeu 45340 stoweidlem35 46072 elsprel 47505 grictr 47953 |
| Copyright terms: Public domain | W3C validator |