![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1946 and 19.42v 1950. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2349. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1951 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1946 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 |
This theorem is referenced by: 4exdistrv 1953 eu6lem 2570 2mo2 2644 reeanv 3226 cgsex2g 3524 cgsex4g 3525 cgsex4gOLD 3526 spc2egv 3598 spc2ed 3600 dtruALT2 5375 exexneq 5444 dtruOLD 5451 copsex2t 5502 xpnz 6180 fununi 6642 frrlem4 8312 wfrlem4OLD 8350 wfrfunOLD 8357 tfrlem7 8421 ener 9039 domtr 9045 unen 9084 undom 9097 undomOLD 9098 sbthlem10 9130 mapen 9179 entrfil 9222 domtrfil 9229 sbthfilem 9235 infxpenc2 10059 fseqen 10064 dfac5lem4 10163 dfac5lem4OLD 10165 zorn2lem6 10538 fpwwe2lem11 10678 genpnnp 11042 hashfacen 14489 summo 15749 ntrivcvgmul 15934 prodmo 15968 iscatd2 17725 catcone0 17731 gictr 19306 gsumval3eu 19936 ptbasin 23600 txcls 23627 txbasval 23629 hmphtr 23806 reconn 24863 phtpcer 25040 pcohtpy 25066 mbfi1flimlem 25771 mbfmullem 25774 itg2add 25808 brabgaf 32627 pconnconn 35215 txsconn 35225 neibastop1 36341 bj-unexg 37020 copsex2d 37121 riscer 37974 disjecxrn 38370 br1cosscnvxrn 38455 rictr 42506 fnchoice 44966 fzisoeu 45250 stoweidlem35 45990 elsprel 47399 grictr 47829 |
Copyright terms: Public domain | W3C validator |