![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1949 and 19.42v 1953. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2355. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: 4exdistrv 1956 eu6lem 2576 2mo2 2650 reeanv 3235 cgsex2g 3537 cgsex4g 3538 cgsex4gOLD 3539 spc2egv 3612 spc2ed 3614 dtruALT2 5388 exexneq 5454 dtruOLD 5461 copsex2t 5512 xpnz 6190 fununi 6653 frrlem4 8330 wfrlem4OLD 8368 wfrfunOLD 8375 tfrlem7 8439 ener 9061 domtr 9067 unen 9112 undom 9125 undomOLD 9126 sbthlem10 9158 mapen 9207 entrfil 9251 domtrfil 9258 sbthfilem 9264 infxpenc2 10091 fseqen 10096 dfac5lem4 10195 dfac5lem4OLD 10197 zorn2lem6 10570 fpwwe2lem11 10710 genpnnp 11074 hashfacen 14503 summo 15765 ntrivcvgmul 15950 prodmo 15984 iscatd2 17739 catcone0 17745 gictr 19316 gsumval3eu 19946 ptbasin 23606 txcls 23633 txbasval 23635 hmphtr 23812 reconn 24869 phtpcer 25046 pcohtpy 25072 mbfi1flimlem 25777 mbfmullem 25780 itg2add 25814 brabgaf 32630 pconnconn 35199 txsconn 35209 neibastop1 36325 bj-unexg 37004 copsex2d 37105 riscer 37948 disjecxrn 38345 br1cosscnvxrn 38430 rictr 42475 fnchoice 44929 fzisoeu 45215 stoweidlem35 45956 elsprel 47349 grictr 47776 |
Copyright terms: Public domain | W3C validator |