| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version | ||
| Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1949 and 19.42v 1953. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2350. (Contributed by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 4exdistrv 1956 eu6lem 2572 2mo2 2646 reeanv 3213 cgsex2g 3506 cgsex4g 3507 cgsex4gOLD 3508 spc2egv 3578 spc2ed 3580 dtruALT2 5340 exexneq 5409 dtruOLD 5416 copsex2t 5467 xpnz 6148 fununi 6610 frrlem4 8286 wfrlem4OLD 8324 wfrfunOLD 8331 tfrlem7 8395 ener 9013 domtr 9019 unen 9058 undom 9071 undomOLD 9072 sbthlem10 9104 mapen 9153 entrfil 9197 domtrfil 9204 sbthfilem 9210 infxpenc2 10034 fseqen 10039 dfac5lem4 10138 dfac5lem4OLD 10140 zorn2lem6 10513 fpwwe2lem11 10653 genpnnp 11017 hashfacen 14470 summo 15731 ntrivcvgmul 15916 prodmo 15950 iscatd2 17691 catcone0 17697 gictr 19257 gsumval3eu 19883 ptbasin 23513 txcls 23540 txbasval 23542 hmphtr 23719 reconn 24766 phtpcer 24943 pcohtpy 24969 mbfi1flimlem 25673 mbfmullem 25676 itg2add 25710 brabgaf 32534 pconnconn 35199 txsconn 35209 neibastop1 36323 bj-unexg 37002 copsex2d 37103 riscer 37958 disjecxrn 38353 br1cosscnvxrn 38438 rictr 42490 fnchoice 45001 fzisoeu 45277 stoweidlem35 46012 elsprel 47437 grictr 47884 |
| Copyright terms: Public domain | W3C validator |