| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version | ||
| Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1949 and 19.42v 1953. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2347. (Contributed by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 4exdistrv 1956 eu6lem 2566 2mo2 2640 reeanv 3209 cgsex2g 3493 cgsex4g 3494 cgsex4gOLD 3495 spc2egv 3565 spc2ed 3567 dtruALT2 5325 exexneq 5394 dtruOLD 5401 copsex2t 5452 xpnz 6132 fununi 6591 frrlem4 8268 tfrlem7 8351 ener 8972 domtr 8978 unen 9017 undom 9029 sbthlem10 9060 mapen 9105 entrfil 9149 domtrfil 9156 sbthfilem 9162 infxpenc2 9975 fseqen 9980 dfac5lem4 10079 dfac5lem4OLD 10081 zorn2lem6 10454 fpwwe2lem11 10594 genpnnp 10958 hashfacen 14419 summo 15683 ntrivcvgmul 15868 prodmo 15902 iscatd2 17642 catcone0 17648 gictr 19208 gsumval3eu 19834 ptbasin 23464 txcls 23491 txbasval 23493 hmphtr 23670 reconn 24717 phtpcer 24894 pcohtpy 24920 mbfi1flimlem 25623 mbfmullem 25626 itg2add 25660 brabgaf 32536 pconnconn 35218 txsconn 35228 neibastop1 36347 bj-unexg 37026 copsex2d 37127 riscer 37982 dmxrn 38360 disjecxrn 38375 br1cosscnvxrn 38465 dmqsblocks 38845 rictr 42508 fnchoice 45023 fzisoeu 45298 stoweidlem35 46033 elsprel 47476 grictr 47923 |
| Copyright terms: Public domain | W3C validator |