| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version | ||
| Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1949 and 19.42v 1953. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2347. (Contributed by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 4exdistrv 1956 eu6lem 2567 2mo2 2641 reeanv 3210 cgsex2g 3496 cgsex4g 3497 cgsex4gOLD 3498 spc2egv 3568 spc2ed 3570 dtruALT2 5328 exexneq 5397 dtruOLD 5404 copsex2t 5455 xpnz 6135 fununi 6594 frrlem4 8271 tfrlem7 8354 ener 8975 domtr 8981 unen 9020 undom 9033 undomOLD 9034 sbthlem10 9066 mapen 9111 entrfil 9155 domtrfil 9162 sbthfilem 9168 infxpenc2 9982 fseqen 9987 dfac5lem4 10086 dfac5lem4OLD 10088 zorn2lem6 10461 fpwwe2lem11 10601 genpnnp 10965 hashfacen 14426 summo 15690 ntrivcvgmul 15875 prodmo 15909 iscatd2 17649 catcone0 17655 gictr 19215 gsumval3eu 19841 ptbasin 23471 txcls 23498 txbasval 23500 hmphtr 23677 reconn 24724 phtpcer 24901 pcohtpy 24927 mbfi1flimlem 25630 mbfmullem 25633 itg2add 25667 brabgaf 32543 pconnconn 35225 txsconn 35235 neibastop1 36354 bj-unexg 37033 copsex2d 37134 riscer 37989 dmxrn 38367 disjecxrn 38382 br1cosscnvxrn 38472 dmqsblocks 38852 rictr 42515 fnchoice 45030 fzisoeu 45305 stoweidlem35 46040 elsprel 47480 grictr 47927 |
| Copyright terms: Public domain | W3C validator |