| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version | ||
| Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1949 and 19.42v 1953. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2347. (Contributed by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.41v 1949 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 4exdistrv 1956 eu6lem 2566 2mo2 2640 reeanv 3201 cgsex2g 3484 cgsex4g 3485 cgsex4gOLD 3486 spc2egv 3556 spc2ed 3558 dtruALT2 5312 exexneq 5381 dtruOLD 5388 copsex2t 5439 xpnz 6112 fununi 6561 frrlem4 8229 tfrlem7 8312 ener 8933 domtr 8939 unen 8978 undom 8989 sbthlem10 9020 mapen 9065 entrfil 9109 domtrfil 9116 sbthfilem 9122 infxpenc2 9935 fseqen 9940 dfac5lem4 10039 dfac5lem4OLD 10041 zorn2lem6 10414 fpwwe2lem11 10554 genpnnp 10918 hashfacen 14379 summo 15642 ntrivcvgmul 15827 prodmo 15861 iscatd2 17605 catcone0 17611 gictr 19173 gsumval3eu 19801 ptbasin 23480 txcls 23507 txbasval 23509 hmphtr 23686 reconn 24733 phtpcer 24910 pcohtpy 24936 mbfi1flimlem 25639 mbfmullem 25642 itg2add 25676 brabgaf 32569 pconnconn 35203 txsconn 35213 neibastop1 36332 bj-unexg 37011 copsex2d 37112 riscer 37967 dmxrn 38345 disjecxrn 38360 br1cosscnvxrn 38450 dmqsblocks 38830 rictr 42493 fnchoice 45007 fzisoeu 45282 stoweidlem35 46017 elsprel 47460 grictr 47908 |
| Copyright terms: Public domain | W3C validator |