Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1954 and 19.42v 1958. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2349. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1959 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1954 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: 4exdistrv 1961 eu6lem 2573 2mo2 2649 reeanv 3292 cgsex2g 3465 cgsex4g 3466 cgsex4gOLD 3467 spc2egv 3528 spc2ed 3530 dtru 5288 copsex2t 5400 copsex2gOLD 5402 xpnz 6051 fununi 6493 frrlem4 8076 wfrlem4OLD 8114 wfrfunOLD 8121 tfrlem7 8185 ener 8742 domtr 8748 unen 8790 undom 8800 sbthlem10 8832 mapen 8877 entrfil 8931 domtrfi 8938 sbthfilem 8941 infxpenc2 9709 fseqen 9714 dfac5lem4 9813 zorn2lem6 10188 fpwwe2lem11 10328 genpnnp 10692 hashfacen 14094 hashfacenOLD 14095 summo 15357 ntrivcvgmul 15542 prodmo 15574 iscatd2 17307 catcone0 17313 gictr 18806 gsumval3eu 19420 ptbasin 22636 txcls 22663 txbasval 22665 hmphtr 22842 reconn 23897 phtpcer 24064 pcohtpy 24089 mbfi1flimlem 24792 mbfmullem 24795 itg2add 24829 brabgaf 30849 pconnconn 33093 txsconn 33103 neibastop1 34475 bj-dtru 34926 copsex2d 35237 riscer 36073 br1cosscnvxrn 36519 sn-dtru 40116 fnchoice 42461 fzisoeu 42729 stoweidlem35 43466 elsprel 44815 |
Copyright terms: Public domain | W3C validator |