Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1953 and 19.42v 1957. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2347. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1958 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1953 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: 4exdistrv 1960 eu6lem 2573 2mo2 2649 reeanv 3294 cgsex2g 3475 cgsex4g 3476 cgsex4gOLD 3477 spc2egv 3538 spc2ed 3540 dtruALT2 5293 dtru 5359 copsex2t 5406 copsex2gOLD 5408 xpnz 6062 fununi 6509 frrlem4 8105 wfrlem4OLD 8143 wfrfunOLD 8150 tfrlem7 8214 ener 8787 domtr 8793 unen 8836 undom 8846 undomOLD 8847 sbthlem10 8879 mapen 8928 entrfil 8971 domtrfil 8978 sbthfilem 8984 infxpenc2 9778 fseqen 9783 dfac5lem4 9882 zorn2lem6 10257 fpwwe2lem11 10397 genpnnp 10761 hashfacen 14166 hashfacenOLD 14167 summo 15429 ntrivcvgmul 15614 prodmo 15646 iscatd2 17390 catcone0 17396 gictr 18891 gsumval3eu 19505 ptbasin 22728 txcls 22755 txbasval 22757 hmphtr 22934 reconn 23991 phtpcer 24158 pcohtpy 24183 mbfi1flimlem 24887 mbfmullem 24890 itg2add 24924 brabgaf 30948 pconnconn 33193 txsconn 33203 neibastop1 34548 bj-dtru 34999 copsex2d 35310 riscer 36146 br1cosscnvxrn 36592 sn-dtru 40188 fnchoice 42572 fzisoeu 42839 stoweidlem35 43576 elsprel 44927 |
Copyright terms: Public domain | W3C validator |