![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1992 and 19.42v 1996. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2318. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1997 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1992 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 267 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∃wex 1823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 |
This theorem is referenced by: 4exdistrv 1999 eu6lem 2591 eu6OLD 2594 2mo2 2677 cgsex2g 3441 cgsex4g 3442 vtocl2 3462 spc2egv 3497 dtru 5084 copsex2t 5190 copsex2g 5191 xpnz 5809 fununi 6211 wfrlem4 7702 wfrfun 7710 tfrlem7 7764 ener 8290 domtr 8296 unen 8330 undom 8338 sbthlem10 8369 mapen 8414 infxpenc2 9180 fseqen 9185 dfac5lem4 9284 zorn2lem6 9660 fpwwe2lem12 9800 genpnnp 10164 hashfacen 13556 summo 14859 ntrivcvgmul 15041 prodmo 15073 iscatd2 16731 gictr 18105 gsumval3eu 18695 ptbasin 21793 txcls 21820 txbasval 21822 hmphtr 21999 reconn 23043 phtpcer 23206 pcohtpy 23231 mbfi1flimlem 23930 mbfmullem 23933 itg2add 23967 spc2ed 29888 brabgaf 29987 pconnconn 31816 txsconn 31826 frrlem4 32376 frrlem5c 32379 neibastop1 32946 bj-dtru 33377 riscer 34416 br1cosscnvxrn 34857 fnchoice 40131 fzisoeu 40433 stoweidlem35 41189 elsprel 42424 |
Copyright terms: Public domain | W3C validator |