![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistrv | Structured version Visualization version GIF version |
Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1953 and 19.42v 1957. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 2345. (Contributed by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
exdistrv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1958 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.41v 1953 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: 4exdistrv 1960 eu6lem 2567 2mo2 2643 reeanv 3226 cgsex2g 3519 cgsex4g 3520 cgsex4gOLD 3521 cgsex4gOLDOLD 3522 spc2egv 3589 spc2ed 3591 dtruALT2 5368 exexneq 5434 dtruOLD 5441 copsex2t 5492 copsex2gOLD 5494 xpnz 6158 fununi 6623 frrlem4 8273 wfrlem4OLD 8311 wfrfunOLD 8318 tfrlem7 8382 ener 8996 domtr 9002 unen 9045 undom 9058 undomOLD 9059 sbthlem10 9091 mapen 9140 entrfil 9187 domtrfil 9194 sbthfilem 9200 infxpenc2 10016 fseqen 10021 dfac5lem4 10120 zorn2lem6 10495 fpwwe2lem11 10635 genpnnp 10999 hashfacen 14412 hashfacenOLD 14413 summo 15662 ntrivcvgmul 15847 prodmo 15879 iscatd2 17624 catcone0 17630 gictr 19148 gsumval3eu 19771 ptbasin 23080 txcls 23107 txbasval 23109 hmphtr 23286 reconn 24343 phtpcer 24510 pcohtpy 24535 mbfi1flimlem 25239 mbfmullem 25242 itg2add 25276 brabgaf 31832 pconnconn 34217 txsconn 34227 neibastop1 35239 bj-unexg 35914 copsex2d 36015 riscer 36851 disjecxrn 37254 br1cosscnvxrn 37339 rictr 41097 fnchoice 43703 fzisoeu 44000 stoweidlem35 44741 elsprel 46133 |
Copyright terms: Public domain | W3C validator |