| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2and | Structured version Visualization version GIF version | ||
| Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| a2and.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) |
| a2and.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) |
| Ref | Expression |
|---|---|
| a2and | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2and.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) | |
| 2 | a2and.2 | . . . . 5 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) | |
| 3 | 2 | expd 415 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜌 → 𝜒))) |
| 4 | 3 | imdistand 570 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜓 ∧ 𝜒))) |
| 5 | imim1 83 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜏 → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃))) | |
| 6 | 5 | com3l 89 | . . 3 ⊢ ((𝜏 → 𝜃) → ((𝜓 ∧ 𝜒) → (((𝜓 ∧ 𝜒) → 𝜏) → 𝜃))) |
| 7 | 1, 4, 6 | syl6c 70 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (((𝜓 ∧ 𝜒) → 𝜏) → 𝜃))) |
| 8 | 7 | com23 86 | 1 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: telgsumfzs 20007 chnind 33001 |
| Copyright terms: Public domain | W3C validator |