Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistand Structured version   Visualization version   GIF version

Theorem imdistand 574
 Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imdistand (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 imdistan 571 . 2 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) → (𝜓𝜃)))
31, 2sylib 221 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400 This theorem is referenced by:  imdistanda  575  a2and  842  predpo  6138  unblem1  8758  cfub  9664  lbzbi  12328  cusgredgex  32482  poimirlem32  35088  ispridl2  35475  ispridlc  35507  lnr2i  40053  rfovcnvf1od  40698
 Copyright terms: Public domain W3C validator