MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animpimp2impd Structured version   Visualization version   GIF version

Theorem animpimp2impd 846
Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
animpimp2impd.1 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
animpimp2impd.2 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
Assertion
Ref Expression
animpimp2impd (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))

Proof of Theorem animpimp2impd
StepHypRef Expression
1 animpimp2impd.1 . . . 4 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
2 animpimp2impd.2 . . . . . 6 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
32expr 456 . . . . 5 ((𝜓𝜑) → (𝜃 → (𝜂𝜏)))
43a2d 29 . . . 4 ((𝜓𝜑) → ((𝜃𝜂) → (𝜃𝜏)))
51, 4syld 47 . . 3 ((𝜓𝜑) → (𝜒 → (𝜃𝜏)))
65expcom 413 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
76a2d 29 1 (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  seqcl2  14038  seqfveq2  14042  seqshft2  14046  monoord  14050  seqsplit  14053  seqid2  14066  seqhomo  14067  sylow1lem1  19579  imasdsf1olem  24312  ovolicc2lem3  25472  dvnres  25885  cvmliftlem7  35313  cvmliftlem10  35316  monoordxrv  45508  smonoord  47385
  Copyright terms: Public domain W3C validator