MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animpimp2impd Structured version   Visualization version   GIF version

Theorem animpimp2impd 846
Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
animpimp2impd.1 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
animpimp2impd.2 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
Assertion
Ref Expression
animpimp2impd (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))

Proof of Theorem animpimp2impd
StepHypRef Expression
1 animpimp2impd.1 . . . 4 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
2 animpimp2impd.2 . . . . . 6 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
32expr 456 . . . . 5 ((𝜓𝜑) → (𝜃 → (𝜂𝜏)))
43a2d 29 . . . 4 ((𝜓𝜑) → ((𝜃𝜂) → (𝜃𝜏)))
51, 4syld 47 . . 3 ((𝜓𝜑) → (𝜒 → (𝜃𝜏)))
65expcom 413 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
76a2d 29 1 (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  seqcl2  13985  seqfveq2  13989  seqshft2  13993  monoord  13997  seqsplit  14000  seqid2  14013  seqhomo  14014  sylow1lem1  19528  imasdsf1olem  24261  ovolicc2lem3  25420  dvnres  25833  cvmliftlem7  35278  cvmliftlem10  35281  monoordxrv  45477  smonoord  47372
  Copyright terms: Public domain W3C validator