MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animpimp2impd Structured version   Visualization version   GIF version

Theorem animpimp2impd 846
Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
animpimp2impd.1 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
animpimp2impd.2 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
Assertion
Ref Expression
animpimp2impd (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))

Proof of Theorem animpimp2impd
StepHypRef Expression
1 animpimp2impd.1 . . . 4 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
2 animpimp2impd.2 . . . . . 6 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
32expr 456 . . . . 5 ((𝜓𝜑) → (𝜃 → (𝜂𝜏)))
43a2d 29 . . . 4 ((𝜓𝜑) → ((𝜃𝜂) → (𝜃𝜏)))
51, 4syld 47 . . 3 ((𝜓𝜑) → (𝜒 → (𝜃𝜏)))
65expcom 413 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
76a2d 29 1 (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  seqcl2  13929  seqfveq2  13933  seqshft2  13937  monoord  13941  seqsplit  13944  seqid2  13957  seqhomo  13958  sylow1lem1  19512  imasdsf1olem  24289  ovolicc2lem3  25448  dvnres  25861  cvmliftlem7  35356  cvmliftlem10  35359  monoordxrv  45603  smonoord  47495
  Copyright terms: Public domain W3C validator