Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > animpimp2impd | Structured version Visualization version GIF version |
Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
animpimp2impd.1 | ⊢ ((𝜓 ∧ 𝜑) → (𝜒 → (𝜃 → 𝜂))) |
animpimp2impd.2 | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → (𝜂 → 𝜏)) |
Ref | Expression |
---|---|
animpimp2impd | ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | animpimp2impd.1 | . . . 4 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 → (𝜃 → 𝜂))) | |
2 | animpimp2impd.2 | . . . . . 6 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → (𝜂 → 𝜏)) | |
3 | 2 | expr 456 | . . . . 5 ⊢ ((𝜓 ∧ 𝜑) → (𝜃 → (𝜂 → 𝜏))) |
4 | 3 | a2d 29 | . . . 4 ⊢ ((𝜓 ∧ 𝜑) → ((𝜃 → 𝜂) → (𝜃 → 𝜏))) |
5 | 1, 4 | syld 47 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 → (𝜃 → 𝜏))) |
6 | 5 | expcom 413 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
7 | 6 | a2d 29 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: seqcl2 13669 seqfveq2 13673 seqshft2 13677 monoord 13681 seqsplit 13684 seqid2 13697 seqhomo 13698 sylow1lem1 19118 imasdsf1olem 23434 ovolicc2lem3 24588 dvnres 25000 cvmliftlem7 33153 cvmliftlem10 33156 monoordxrv 42912 smonoord 44711 |
Copyright terms: Public domain | W3C validator |