MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animpimp2impd Structured version   Visualization version   GIF version

Theorem animpimp2impd 843
Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
animpimp2impd.1 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
animpimp2impd.2 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
Assertion
Ref Expression
animpimp2impd (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))

Proof of Theorem animpimp2impd
StepHypRef Expression
1 animpimp2impd.1 . . . 4 ((𝜓𝜑) → (𝜒 → (𝜃𝜂)))
2 animpimp2impd.2 . . . . . 6 ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))
32expr 457 . . . . 5 ((𝜓𝜑) → (𝜃 → (𝜂𝜏)))
43a2d 29 . . . 4 ((𝜓𝜑) → ((𝜃𝜂) → (𝜃𝜏)))
51, 4syld 47 . . 3 ((𝜓𝜑) → (𝜒 → (𝜃𝜏)))
65expcom 414 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
76a2d 29 1 (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  seqcl2  13741  seqfveq2  13745  seqshft2  13749  monoord  13753  seqsplit  13756  seqid2  13769  seqhomo  13770  sylow1lem1  19203  imasdsf1olem  23526  ovolicc2lem3  24683  dvnres  25095  cvmliftlem7  33253  cvmliftlem10  33256  monoordxrv  43022  smonoord  44823
  Copyright terms: Public domain W3C validator