MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzs Structured version   Visualization version   GIF version

Theorem telgsumfzs 19926
Description: Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
telgsumfzs.n (𝜑𝑁 ∈ (ℤ𝑀))
telgsumfzs.f (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
Assertion
Ref Expression
telgsumfzs (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑖,𝑁,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsumfzs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 telgsumfzs.f . 2 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
2 telgsumfzs.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 + 1) = (𝑀 + 1))
43oveq2d 7406 . . . . . . . 8 (𝑥 = 𝑀 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑀 + 1)))
54raleqdv 3301 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵))
65anbi2d 630 . . . . . 6 (𝑥 = 𝑀 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵)))
7 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
87mpteq1d 5200 . . . . . . . 8 (𝑥 = 𝑀 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
98oveq2d 7406 . . . . . . 7 (𝑥 = 𝑀 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
103csbeq1d 3869 . . . . . . . 8 (𝑥 = 𝑀(𝑥 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
1110oveq2d 7406 . . . . . . 7 (𝑥 = 𝑀 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
129, 11eqeq12d 2746 . . . . . 6 (𝑥 = 𝑀 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶)))
136, 12imbi12d 344 . . . . 5 (𝑥 = 𝑀 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))))
14 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514oveq2d 7406 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑦 + 1)))
1615raleqdv 3301 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
1716anbi2d 630 . . . . . 6 (𝑥 = 𝑦 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵)))
18 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑀...𝑥) = (𝑀...𝑦))
1918mpteq1d 5200 . . . . . . . 8 (𝑥 = 𝑦 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
2019oveq2d 7406 . . . . . . 7 (𝑥 = 𝑦 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
2114csbeq1d 3869 . . . . . . . 8 (𝑥 = 𝑦(𝑥 + 1) / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
2221oveq2d 7406 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
2320, 22eqeq12d 2746 . . . . . 6 (𝑥 = 𝑦 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)))
2417, 23imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))))
25 oveq1 7397 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
2625oveq2d 7406 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑀...(𝑥 + 1)) = (𝑀...((𝑦 + 1) + 1)))
2726raleqdv 3301 . . . . . . 7 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵))
2827anbi2d 630 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)))
29 oveq2 7398 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑀...𝑥) = (𝑀...(𝑦 + 1)))
3029mpteq1d 5200 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
3130oveq2d 7406 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
3225csbeq1d 3869 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
3332oveq2d 7406 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
3431, 33eqeq12d 2746 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
3528, 34imbi12d 344 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
36 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3736oveq2d 7406 . . . . . . . 8 (𝑥 = 𝑁 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑁 + 1)))
3837raleqdv 3301 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵))
3938anbi2d 630 . . . . . 6 (𝑥 = 𝑁 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)))
40 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁))
4140mpteq1d 5200 . . . . . . . 8 (𝑥 = 𝑁 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
4241oveq2d 7406 . . . . . . 7 (𝑥 = 𝑁 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
4336csbeq1d 3869 . . . . . . . 8 (𝑥 = 𝑁(𝑥 + 1) / 𝑘𝐶 = (𝑁 + 1) / 𝑘𝐶)
4443oveq2d 7406 . . . . . . 7 (𝑥 = 𝑁 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
4542, 44eqeq12d 2746 . . . . . 6 (𝑥 = 𝑁 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
4639, 45imbi12d 344 . . . . 5 (𝑥 = 𝑁 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
47 eluzel2 12805 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
482, 47syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
4948adantr 480 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ ℤ)
50 fzsn 13534 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
5149, 50syl 17 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀...𝑀) = {𝑀})
5251mpteq1d 5200 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
5352oveq2d 7406 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
54 telgsumfzs.b . . . . . . 7 𝐵 = (Base‘𝐺)
55 telgsumfzs.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
56 ablgrp 19722 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5755, 56syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5857grpmndd 18885 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
5958adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Mnd)
6057adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Grp)
61 uzid 12815 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6249, 61syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (ℤ𝑀))
63 peano2uz 12867 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
6462, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (ℤ𝑀))
65 eluzfz1 13499 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
6664, 65syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
67 rspcsbela 4404 . . . . . . . . 9 ((𝑀 ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6866, 67sylancom 588 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
69 eluzfz2 13500 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
7064, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
71 rspcsbela 4404 . . . . . . . . 9 (((𝑀 + 1) ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
7270, 71sylancom 588 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
73 telgsumfzs.m . . . . . . . . 9 = (-g𝐺)
7454, 73grpsubcl 18959 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 / 𝑘𝐶𝐵(𝑀 + 1) / 𝑘𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
7560, 68, 72, 74syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
76 csbeq1 3868 . . . . . . . . 9 (𝑖 = 𝑀𝑖 / 𝑘𝐶 = 𝑀 / 𝑘𝐶)
77 oveq1 7397 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑖 + 1) = (𝑀 + 1))
7877csbeq1d 3869 . . . . . . . . 9 (𝑖 = 𝑀(𝑖 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
7976, 78oveq12d 7408 . . . . . . . 8 (𝑖 = 𝑀 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8079adantl 481 . . . . . . 7 (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) ∧ 𝑖 = 𝑀) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8154, 59, 49, 75, 80gsumsnd 19889 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8253, 81eqtrd 2765 . . . . 5 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8354, 55, 73telgsumfzslem 19925 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
8483ex 412 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
85 eluzelz 12810 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
8685peano2zd 12648 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℤ)
8786peano2zd 12648 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ ℤ)
88 peano2z 12581 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℤ)
8988zred 12645 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℝ)
9085, 89syl 17 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℝ)
9190lep1d 12121 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ≤ ((𝑦 + 1) + 1))
92 eluz2 12806 . . . . . . . . . 10 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) ↔ ((𝑦 + 1) ∈ ℤ ∧ ((𝑦 + 1) + 1) ∈ ℤ ∧ (𝑦 + 1) ≤ ((𝑦 + 1) + 1)))
9386, 87, 91, 92syl3anbrc 1344 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
94 fzss2 13532 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
9593, 94syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
96 ssralv 4018 . . . . . . . 8 ((𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9795, 96syl 17 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9897adantld 490 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9984, 98a2and 845 . . . . 5 (𝑦 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
10013, 24, 35, 46, 82, 99uzind4i 12876 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
101100expd 415 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
1022, 101mpcom 38 . 2 (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
1031, 102mpd 15 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  csb 3865  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078  cle 11216  cz 12536  cuz 12800  ...cfz 13475  Basecbs 17186   Σg cgsu 17410  Mndcmnd 18668  Grpcgrp 18872  -gcsg 18874  Abelcabl 19718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-abl 19720
This theorem is referenced by:  telgsumfz  19927  telgsumfz0s  19928
  Copyright terms: Public domain W3C validator