MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzs Structured version   Visualization version   GIF version

Theorem telgsumfzs 19851
Description: Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
telgsumfzs.n (𝜑𝑁 ∈ (ℤ𝑀))
telgsumfzs.f (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
Assertion
Ref Expression
telgsumfzs (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑖,𝑁,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsumfzs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 telgsumfzs.f . 2 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
2 telgsumfzs.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 oveq1 7412 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 + 1) = (𝑀 + 1))
43oveq2d 7421 . . . . . . . 8 (𝑥 = 𝑀 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑀 + 1)))
54raleqdv 3325 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵))
65anbi2d 629 . . . . . 6 (𝑥 = 𝑀 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵)))
7 oveq2 7413 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
87mpteq1d 5242 . . . . . . . 8 (𝑥 = 𝑀 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
98oveq2d 7421 . . . . . . 7 (𝑥 = 𝑀 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
103csbeq1d 3896 . . . . . . . 8 (𝑥 = 𝑀(𝑥 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
1110oveq2d 7421 . . . . . . 7 (𝑥 = 𝑀 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
129, 11eqeq12d 2748 . . . . . 6 (𝑥 = 𝑀 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶)))
136, 12imbi12d 344 . . . . 5 (𝑥 = 𝑀 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))))
14 oveq1 7412 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514oveq2d 7421 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑦 + 1)))
1615raleqdv 3325 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
1716anbi2d 629 . . . . . 6 (𝑥 = 𝑦 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵)))
18 oveq2 7413 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑀...𝑥) = (𝑀...𝑦))
1918mpteq1d 5242 . . . . . . . 8 (𝑥 = 𝑦 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
2019oveq2d 7421 . . . . . . 7 (𝑥 = 𝑦 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
2114csbeq1d 3896 . . . . . . . 8 (𝑥 = 𝑦(𝑥 + 1) / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
2221oveq2d 7421 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
2320, 22eqeq12d 2748 . . . . . 6 (𝑥 = 𝑦 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)))
2417, 23imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))))
25 oveq1 7412 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
2625oveq2d 7421 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑀...(𝑥 + 1)) = (𝑀...((𝑦 + 1) + 1)))
2726raleqdv 3325 . . . . . . 7 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵))
2827anbi2d 629 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)))
29 oveq2 7413 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑀...𝑥) = (𝑀...(𝑦 + 1)))
3029mpteq1d 5242 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
3130oveq2d 7421 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
3225csbeq1d 3896 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
3332oveq2d 7421 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
3431, 33eqeq12d 2748 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
3528, 34imbi12d 344 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
36 oveq1 7412 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3736oveq2d 7421 . . . . . . . 8 (𝑥 = 𝑁 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑁 + 1)))
3837raleqdv 3325 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵))
3938anbi2d 629 . . . . . 6 (𝑥 = 𝑁 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)))
40 oveq2 7413 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁))
4140mpteq1d 5242 . . . . . . . 8 (𝑥 = 𝑁 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
4241oveq2d 7421 . . . . . . 7 (𝑥 = 𝑁 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
4336csbeq1d 3896 . . . . . . . 8 (𝑥 = 𝑁(𝑥 + 1) / 𝑘𝐶 = (𝑁 + 1) / 𝑘𝐶)
4443oveq2d 7421 . . . . . . 7 (𝑥 = 𝑁 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
4542, 44eqeq12d 2748 . . . . . 6 (𝑥 = 𝑁 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
4639, 45imbi12d 344 . . . . 5 (𝑥 = 𝑁 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
47 eluzel2 12823 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
482, 47syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
4948adantr 481 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ ℤ)
50 fzsn 13539 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
5149, 50syl 17 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀...𝑀) = {𝑀})
5251mpteq1d 5242 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
5352oveq2d 7421 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
54 telgsumfzs.b . . . . . . 7 𝐵 = (Base‘𝐺)
55 telgsumfzs.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
56 ablgrp 19647 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5755, 56syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5857grpmndd 18828 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
5958adantr 481 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Mnd)
6057adantr 481 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Grp)
61 uzid 12833 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6249, 61syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (ℤ𝑀))
63 peano2uz 12881 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
6462, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (ℤ𝑀))
65 eluzfz1 13504 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
6664, 65syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
67 rspcsbela 4434 . . . . . . . . 9 ((𝑀 ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6866, 67sylancom 588 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
69 eluzfz2 13505 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
7064, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
71 rspcsbela 4434 . . . . . . . . 9 (((𝑀 + 1) ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
7270, 71sylancom 588 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
73 telgsumfzs.m . . . . . . . . 9 = (-g𝐺)
7454, 73grpsubcl 18899 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 / 𝑘𝐶𝐵(𝑀 + 1) / 𝑘𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
7560, 68, 72, 74syl3anc 1371 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
76 csbeq1 3895 . . . . . . . . 9 (𝑖 = 𝑀𝑖 / 𝑘𝐶 = 𝑀 / 𝑘𝐶)
77 oveq1 7412 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑖 + 1) = (𝑀 + 1))
7877csbeq1d 3896 . . . . . . . . 9 (𝑖 = 𝑀(𝑖 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
7976, 78oveq12d 7423 . . . . . . . 8 (𝑖 = 𝑀 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8079adantl 482 . . . . . . 7 (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) ∧ 𝑖 = 𝑀) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8154, 59, 49, 75, 80gsumsnd 19814 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8253, 81eqtrd 2772 . . . . 5 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8354, 55, 73telgsumfzslem 19850 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
8483ex 413 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
85 eluzelz 12828 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
8685peano2zd 12665 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℤ)
8786peano2zd 12665 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ ℤ)
88 peano2z 12599 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℤ)
8988zred 12662 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℝ)
9085, 89syl 17 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℝ)
9190lep1d 12141 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ≤ ((𝑦 + 1) + 1))
92 eluz2 12824 . . . . . . . . . 10 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) ↔ ((𝑦 + 1) ∈ ℤ ∧ ((𝑦 + 1) + 1) ∈ ℤ ∧ (𝑦 + 1) ≤ ((𝑦 + 1) + 1)))
9386, 87, 91, 92syl3anbrc 1343 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
94 fzss2 13537 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
9593, 94syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
96 ssralv 4049 . . . . . . . 8 ((𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9795, 96syl 17 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9897adantld 491 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9984, 98a2and 843 . . . . 5 (𝑦 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
10013, 24, 35, 46, 82, 99uzind4i 12890 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
101100expd 416 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
1022, 101mpcom 38 . 2 (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
1031, 102mpd 15 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  csb 3892  wss 3947  {csn 4627   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109  cle 11245  cz 12554  cuz 12818  ...cfz 13480  Basecbs 17140   Σg cgsu 17382  Mndcmnd 18621  Grpcgrp 18815  -gcsg 18817  Abelcabl 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-abl 19645
This theorem is referenced by:  telgsumfz  19852  telgsumfz0s  19853
  Copyright terms: Public domain W3C validator