MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzs Structured version   Visualization version   GIF version

Theorem telgsumfzs 19903
Description: Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
telgsumfzs.n (𝜑𝑁 ∈ (ℤ𝑀))
telgsumfzs.f (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
Assertion
Ref Expression
telgsumfzs (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑖,𝑁,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsumfzs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 telgsumfzs.f . 2 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
2 telgsumfzs.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 oveq1 7376 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 + 1) = (𝑀 + 1))
43oveq2d 7385 . . . . . . . 8 (𝑥 = 𝑀 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑀 + 1)))
54raleqdv 3296 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵))
65anbi2d 630 . . . . . 6 (𝑥 = 𝑀 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵)))
7 oveq2 7377 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
87mpteq1d 5192 . . . . . . . 8 (𝑥 = 𝑀 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
98oveq2d 7385 . . . . . . 7 (𝑥 = 𝑀 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
103csbeq1d 3863 . . . . . . . 8 (𝑥 = 𝑀(𝑥 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
1110oveq2d 7385 . . . . . . 7 (𝑥 = 𝑀 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
129, 11eqeq12d 2745 . . . . . 6 (𝑥 = 𝑀 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶)))
136, 12imbi12d 344 . . . . 5 (𝑥 = 𝑀 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))))
14 oveq1 7376 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514oveq2d 7385 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑦 + 1)))
1615raleqdv 3296 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
1716anbi2d 630 . . . . . 6 (𝑥 = 𝑦 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵)))
18 oveq2 7377 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑀...𝑥) = (𝑀...𝑦))
1918mpteq1d 5192 . . . . . . . 8 (𝑥 = 𝑦 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
2019oveq2d 7385 . . . . . . 7 (𝑥 = 𝑦 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
2114csbeq1d 3863 . . . . . . . 8 (𝑥 = 𝑦(𝑥 + 1) / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
2221oveq2d 7385 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
2320, 22eqeq12d 2745 . . . . . 6 (𝑥 = 𝑦 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)))
2417, 23imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))))
25 oveq1 7376 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
2625oveq2d 7385 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑀...(𝑥 + 1)) = (𝑀...((𝑦 + 1) + 1)))
2726raleqdv 3296 . . . . . . 7 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵))
2827anbi2d 630 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)))
29 oveq2 7377 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑀...𝑥) = (𝑀...(𝑦 + 1)))
3029mpteq1d 5192 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
3130oveq2d 7385 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
3225csbeq1d 3863 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
3332oveq2d 7385 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
3431, 33eqeq12d 2745 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
3528, 34imbi12d 344 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
36 oveq1 7376 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3736oveq2d 7385 . . . . . . . 8 (𝑥 = 𝑁 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑁 + 1)))
3837raleqdv 3296 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵))
3938anbi2d 630 . . . . . 6 (𝑥 = 𝑁 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)))
40 oveq2 7377 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁))
4140mpteq1d 5192 . . . . . . . 8 (𝑥 = 𝑁 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
4241oveq2d 7385 . . . . . . 7 (𝑥 = 𝑁 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
4336csbeq1d 3863 . . . . . . . 8 (𝑥 = 𝑁(𝑥 + 1) / 𝑘𝐶 = (𝑁 + 1) / 𝑘𝐶)
4443oveq2d 7385 . . . . . . 7 (𝑥 = 𝑁 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
4542, 44eqeq12d 2745 . . . . . 6 (𝑥 = 𝑁 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
4639, 45imbi12d 344 . . . . 5 (𝑥 = 𝑁 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
47 eluzel2 12774 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
482, 47syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
4948adantr 480 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ ℤ)
50 fzsn 13503 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
5149, 50syl 17 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀...𝑀) = {𝑀})
5251mpteq1d 5192 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
5352oveq2d 7385 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
54 telgsumfzs.b . . . . . . 7 𝐵 = (Base‘𝐺)
55 telgsumfzs.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
56 ablgrp 19699 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5755, 56syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5857grpmndd 18860 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
5958adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Mnd)
6057adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Grp)
61 uzid 12784 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6249, 61syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (ℤ𝑀))
63 peano2uz 12836 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
6462, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (ℤ𝑀))
65 eluzfz1 13468 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
6664, 65syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
67 rspcsbela 4397 . . . . . . . . 9 ((𝑀 ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6866, 67sylancom 588 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
69 eluzfz2 13469 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
7064, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
71 rspcsbela 4397 . . . . . . . . 9 (((𝑀 + 1) ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
7270, 71sylancom 588 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
73 telgsumfzs.m . . . . . . . . 9 = (-g𝐺)
7454, 73grpsubcl 18934 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 / 𝑘𝐶𝐵(𝑀 + 1) / 𝑘𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
7560, 68, 72, 74syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
76 csbeq1 3862 . . . . . . . . 9 (𝑖 = 𝑀𝑖 / 𝑘𝐶 = 𝑀 / 𝑘𝐶)
77 oveq1 7376 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑖 + 1) = (𝑀 + 1))
7877csbeq1d 3863 . . . . . . . . 9 (𝑖 = 𝑀(𝑖 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
7976, 78oveq12d 7387 . . . . . . . 8 (𝑖 = 𝑀 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8079adantl 481 . . . . . . 7 (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) ∧ 𝑖 = 𝑀) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8154, 59, 49, 75, 80gsumsnd 19866 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8253, 81eqtrd 2764 . . . . 5 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8354, 55, 73telgsumfzslem 19902 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
8483ex 412 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
85 eluzelz 12779 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
8685peano2zd 12617 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℤ)
8786peano2zd 12617 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ ℤ)
88 peano2z 12550 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℤ)
8988zred 12614 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℝ)
9085, 89syl 17 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℝ)
9190lep1d 12090 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ≤ ((𝑦 + 1) + 1))
92 eluz2 12775 . . . . . . . . . 10 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) ↔ ((𝑦 + 1) ∈ ℤ ∧ ((𝑦 + 1) + 1) ∈ ℤ ∧ (𝑦 + 1) ≤ ((𝑦 + 1) + 1)))
9386, 87, 91, 92syl3anbrc 1344 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
94 fzss2 13501 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
9593, 94syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
96 ssralv 4012 . . . . . . . 8 ((𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9795, 96syl 17 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9897adantld 490 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9984, 98a2and 845 . . . . 5 (𝑦 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
10013, 24, 35, 46, 82, 99uzind4i 12845 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
101100expd 415 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
1022, 101mpcom 38 . 2 (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
1031, 102mpd 15 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3859  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047  cle 11185  cz 12505  cuz 12769  ...cfz 13444  Basecbs 17155   Σg cgsu 17379  Mndcmnd 18643  Grpcgrp 18847  -gcsg 18849  Abelcabl 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-abl 19697
This theorem is referenced by:  telgsumfz  19904  telgsumfz0s  19905
  Copyright terms: Public domain W3C validator