MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzs Structured version   Visualization version   GIF version

Theorem telgsumfzs 19374
Description: Telescoping group sum ranging over a finite set of sequential integers, using explicit substitution. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
telgsumfzs.n (𝜑𝑁 ∈ (ℤ𝑀))
telgsumfzs.f (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
Assertion
Ref Expression
telgsumfzs (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑖,𝑁,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsumfzs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 telgsumfzs.f . 2 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)
2 telgsumfzs.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 oveq1 7220 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 + 1) = (𝑀 + 1))
43oveq2d 7229 . . . . . . . 8 (𝑥 = 𝑀 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑀 + 1)))
54raleqdv 3325 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵))
65anbi2d 632 . . . . . 6 (𝑥 = 𝑀 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵)))
7 oveq2 7221 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑀...𝑥) = (𝑀...𝑀))
87mpteq1d 5144 . . . . . . . 8 (𝑥 = 𝑀 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
98oveq2d 7229 . . . . . . 7 (𝑥 = 𝑀 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
103csbeq1d 3815 . . . . . . . 8 (𝑥 = 𝑀(𝑥 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
1110oveq2d 7229 . . . . . . 7 (𝑥 = 𝑀 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
129, 11eqeq12d 2753 . . . . . 6 (𝑥 = 𝑀 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶)))
136, 12imbi12d 348 . . . . 5 (𝑥 = 𝑀 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))))
14 oveq1 7220 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
1514oveq2d 7229 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑦 + 1)))
1615raleqdv 3325 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
1716anbi2d 632 . . . . . 6 (𝑥 = 𝑦 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵)))
18 oveq2 7221 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑀...𝑥) = (𝑀...𝑦))
1918mpteq1d 5144 . . . . . . . 8 (𝑥 = 𝑦 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
2019oveq2d 7229 . . . . . . 7 (𝑥 = 𝑦 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
2114csbeq1d 3815 . . . . . . . 8 (𝑥 = 𝑦(𝑥 + 1) / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
2221oveq2d 7229 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
2320, 22eqeq12d 2753 . . . . . 6 (𝑥 = 𝑦 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)))
2417, 23imbi12d 348 . . . . 5 (𝑥 = 𝑦 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))))
25 oveq1 7220 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
2625oveq2d 7229 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑀...(𝑥 + 1)) = (𝑀...((𝑦 + 1) + 1)))
2726raleqdv 3325 . . . . . . 7 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵))
2827anbi2d 632 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)))
29 oveq2 7221 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑀...𝑥) = (𝑀...(𝑦 + 1)))
3029mpteq1d 5144 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
3130oveq2d 7229 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
3225csbeq1d 3815 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
3332oveq2d 7229 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
3431, 33eqeq12d 2753 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
3528, 34imbi12d 348 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
36 oveq1 7220 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3736oveq2d 7229 . . . . . . . 8 (𝑥 = 𝑁 → (𝑀...(𝑥 + 1)) = (𝑀...(𝑁 + 1)))
3837raleqdv 3325 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵 ↔ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵))
3938anbi2d 632 . . . . . 6 (𝑥 = 𝑁 → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) ↔ (𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵)))
40 oveq2 7221 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑀...𝑥) = (𝑀...𝑁))
4140mpteq1d 5144 . . . . . . . 8 (𝑥 = 𝑁 → (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
4241oveq2d 7229 . . . . . . 7 (𝑥 = 𝑁 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
4336csbeq1d 3815 . . . . . . . 8 (𝑥 = 𝑁(𝑥 + 1) / 𝑘𝐶 = (𝑁 + 1) / 𝑘𝐶)
4443oveq2d 7229 . . . . . . 7 (𝑥 = 𝑁 → (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
4542, 44eqeq12d 2753 . . . . . 6 (𝑥 = 𝑁 → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶) ↔ (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
4639, 45imbi12d 348 . . . . 5 (𝑥 = 𝑁 → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑥 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑥) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑥 + 1) / 𝑘𝐶)) ↔ ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
47 eluzel2 12443 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
482, 47syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
4948adantr 484 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ ℤ)
50 fzsn 13154 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
5149, 50syl 17 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀...𝑀) = {𝑀})
5251mpteq1d 5144 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)) = (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))
5352oveq2d 7229 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
54 telgsumfzs.b . . . . . . 7 𝐵 = (Base‘𝐺)
55 telgsumfzs.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
56 ablgrp 19175 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5755, 56syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
5857grpmndd 18377 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
5958adantr 484 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Mnd)
6057adantr 484 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝐺 ∈ Grp)
61 uzid 12453 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6249, 61syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (ℤ𝑀))
63 peano2uz 12497 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
6462, 63syl 17 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (ℤ𝑀))
65 eluzfz1 13119 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
6664, 65syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 ∈ (𝑀...(𝑀 + 1)))
67 rspcsbela 4350 . . . . . . . . 9 ((𝑀 ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6866, 67sylancom 591 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
69 eluzfz2 13120 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
7064, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) ∈ (𝑀...(𝑀 + 1)))
71 rspcsbela 4350 . . . . . . . . 9 (((𝑀 + 1) ∈ (𝑀...(𝑀 + 1)) ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
7270, 71sylancom 591 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 + 1) / 𝑘𝐶𝐵)
73 telgsumfzs.m . . . . . . . . 9 = (-g𝐺)
7454, 73grpsubcl 18443 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 / 𝑘𝐶𝐵(𝑀 + 1) / 𝑘𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
7560, 68, 72, 74syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶) ∈ 𝐵)
76 csbeq1 3814 . . . . . . . . 9 (𝑖 = 𝑀𝑖 / 𝑘𝐶 = 𝑀 / 𝑘𝐶)
77 oveq1 7220 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑖 + 1) = (𝑀 + 1))
7877csbeq1d 3815 . . . . . . . . 9 (𝑖 = 𝑀(𝑖 + 1) / 𝑘𝐶 = (𝑀 + 1) / 𝑘𝐶)
7976, 78oveq12d 7231 . . . . . . . 8 (𝑖 = 𝑀 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8079adantl 485 . . . . . . 7 (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) ∧ 𝑖 = 𝑀) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8154, 59, 49, 75, 80gsumsnd 19337 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ {𝑀} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8253, 81eqtrd 2777 . . . . 5 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑀 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑀) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑀 + 1) / 𝑘𝐶))
8354, 55, 73telgsumfzslem 19373 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
8483ex 416 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
85 eluzelz 12448 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → 𝑦 ∈ ℤ)
8685peano2zd 12285 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℤ)
8786peano2zd 12285 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ ℤ)
88 peano2z 12218 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℤ)
8988zred 12282 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑦 + 1) ∈ ℝ)
9085, 89syl 17 . . . . . . . . . . 11 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ ℝ)
9190lep1d 11763 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ≤ ((𝑦 + 1) + 1))
92 eluz2 12444 . . . . . . . . . 10 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) ↔ ((𝑦 + 1) ∈ ℤ ∧ ((𝑦 + 1) + 1) ∈ ℤ ∧ (𝑦 + 1) ≤ ((𝑦 + 1) + 1)))
9386, 87, 91, 92syl3anbrc 1345 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
94 fzss2 13152 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ‘(𝑦 + 1)) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
9593, 94syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)))
96 ssralv 3967 . . . . . . . 8 ((𝑀...(𝑦 + 1)) ⊆ (𝑀...((𝑦 + 1) + 1)) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9795, 96syl 17 . . . . . . 7 (𝑦 ∈ (ℤ𝑀) → (∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵 → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9897adantld 494 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵))
9984, 98a2and 845 . . . . 5 (𝑦 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑦 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))))
10013, 24, 35, 46, 82, 99uzind4i 12506 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
101100expd 419 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))))
1022, 101mpcom 38 . 2 (𝜑 → (∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐶𝐵 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶)))
1031, 102mpd 15 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑁 + 1) / 𝑘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  csb 3811  wss 3866  {csn 4541   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732  cle 10868  cz 12176  cuz 12438  ...cfz 13095  Basecbs 16760   Σg cgsu 16945  Mndcmnd 18173  Grpcgrp 18365  -gcsg 18367  Abelcabl 19171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-abl 19173
This theorem is referenced by:  telgsumfz  19375  telgsumfz0s  19376
  Copyright terms: Public domain W3C validator