| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aaanv | Structured version Visualization version GIF version | ||
| Description: Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2331. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| aaanv | ⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | aaan 2331 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| 4 | 3 | bicomi 224 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |