Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aaanv Structured version   Visualization version   GIF version

Theorem aaanv 41895
Description: Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2332. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
aaanv ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem aaanv
StepHypRef Expression
1 nfv 1918 . . 3 𝑦𝜑
2 nfv 1918 . . 3 𝑥𝜓
31, 2aaan 2332 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
43bicomi 223 1 ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator