Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.57 Structured version   Visualization version   GIF version

Theorem pm11.57 41896
Description: Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.57 (∀𝑥𝜑 ↔ ∀𝑥𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pm11.57
StepHypRef Expression
1 nfv 1918 . . . . 5 𝑦𝜑
21nfal 2321 . . . 4 𝑦𝑥𝜑
3 sp 2178 . . . . 5 (∀𝑥𝜑𝜑)
4 stdpc4 2072 . . . . 5 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
53, 4jca 511 . . . 4 (∀𝑥𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑))
62, 5alrimi 2209 . . 3 (∀𝑥𝜑 → ∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
76axc4i 2320 . 2 (∀𝑥𝜑 → ∀𝑥𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
8 simpl 482 . . . 4 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝜑)
98sps 2180 . . 3 (∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝜑)
109alimi 1815 . 2 (∀𝑥𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) → ∀𝑥𝜑)
117, 10impbii 208 1 (∀𝑥𝜑 ↔ ∀𝑥𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator