Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aaan | Structured version Visualization version GIF version |
Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
aaan.1 | ⊢ Ⅎ𝑦𝜑 |
aaan.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
aaan | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aaan.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.28 2224 | . . 3 ⊢ (∀𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓)) |
3 | 2 | albii 1823 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓)) |
4 | aaan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | nfal 2321 | . . 3 ⊢ Ⅎ𝑥∀𝑦𝜓 |
6 | 5 | 19.27 2223 | . 2 ⊢ (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: aaanv 41895 pm11.71 41904 |
Copyright terms: Public domain | W3C validator |