MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaan Structured version   Visualization version   GIF version

Theorem aaan 2332
Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993.)
Hypotheses
Ref Expression
aaan.1 𝑦𝜑
aaan.2 𝑥𝜓
Assertion
Ref Expression
aaan (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))

Proof of Theorem aaan
StepHypRef Expression
1 aaan.1 . . . 4 𝑦𝜑
2119.28 2224 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓))
32albii 1823 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓))
4 aaan.2 . . . 4 𝑥𝜓
54nfal 2321 . . 3 𝑥𝑦𝜓
6519.27 2223 . 2 (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
73, 6bitri 274 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  aaanv  41895  pm11.71  41904
  Copyright terms: Public domain W3C validator