MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaan Structured version   Visualization version   GIF version

Theorem aaan 2332
Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993.) Avoid ax-10 2139. (Revised by GG, 21-Nov-2024.)
Hypotheses
Ref Expression
aaan.1 𝑦𝜑
aaan.2 𝑥𝜓
Assertion
Ref Expression
aaan (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))

Proof of Theorem aaan
StepHypRef Expression
1 19.26-2 1869 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓))
2 aaan.1 . . . . 5 𝑦𝜑
3219.3 2200 . . . 4 (∀𝑦𝜑𝜑)
43albii 1816 . . 3 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝜑)
5 alcom 2157 . . . 4 (∀𝑥𝑦𝜓 ↔ ∀𝑦𝑥𝜓)
6 aaan.2 . . . . . 6 𝑥𝜓
7619.3 2200 . . . . 5 (∀𝑥𝜓𝜓)
87albii 1816 . . . 4 (∀𝑦𝑥𝜓 ↔ ∀𝑦𝜓)
95, 8bitri 275 . . 3 (∀𝑥𝑦𝜓 ↔ ∀𝑦𝜓)
104, 9anbi12i 628 . 2 ((∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
111, 10bitri 275 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781
This theorem is referenced by:  aaanv  44384  pm11.71  44393
  Copyright terms: Public domain W3C validator