| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aaan | Structured version Visualization version GIF version | ||
| Description: Distribute universal quantifiers. (Contributed by NM, 12-Aug-1993.) Avoid ax-10 2141. (Revised by GG, 21-Nov-2024.) |
| Ref | Expression |
|---|---|
| aaan.1 | ⊢ Ⅎ𝑦𝜑 |
| aaan.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| aaan | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26-2 1871 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓)) | |
| 2 | aaan.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 2 | 19.3 2202 | . . . 4 ⊢ (∀𝑦𝜑 ↔ 𝜑) |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥𝜑) |
| 5 | alcom 2159 | . . . 4 ⊢ (∀𝑥∀𝑦𝜓 ↔ ∀𝑦∀𝑥𝜓) | |
| 6 | aaan.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 7 | 6 | 19.3 2202 | . . . . 5 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
| 8 | 7 | albii 1819 | . . . 4 ⊢ (∀𝑦∀𝑥𝜓 ↔ ∀𝑦𝜓) |
| 9 | 5, 8 | bitri 275 | . . 3 ⊢ (∀𝑥∀𝑦𝜓 ↔ ∀𝑦𝜓) |
| 10 | 4, 9 | anbi12i 628 | . 2 ⊢ ((∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| 11 | 1, 10 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: aaanv 44407 pm11.71 44416 |
| Copyright terms: Public domain | W3C validator |