MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecom Structured version   Visualization version   GIF version

Theorem aecom 2427
Description: Commutation law for identical variable specifiers. Both sides of the biconditional are true when 𝑥 and 𝑦 are substituted with the same variable. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 10-May-1993.) Change to a biconditional. (Revised by BJ, 26-Sep-2019.) (New usage is discouraged.)
Assertion
Ref Expression
aecom (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥)

Proof of Theorem aecom
StepHypRef Expression
1 axc11n 2426 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
2 axc11n 2426 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
31, 2impbii 208 1 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  aecoms  2428  naecoms  2429  wl-nfae1  35686
  Copyright terms: Public domain W3C validator