Home | Metamath
Proof Explorer Theorem List (p. 25 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29274) |
Hilbert Space Explorer
(29275-30797) |
Users' Mathboxes
(30798-46480) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cbvex 2401 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Check out cbvexvw 2044, cbvexv1 2343 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbvalv 2402* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvalvw 2043 for a version requiring fewer axioms, to be preferred when sufficient. (Contributed by NM, 5-Aug-1993.) Remove dependency on ax-10 2141, shorten. (Revised by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvexv 2403* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvexvw 2044 for a version requiring fewer axioms, to be preferred when sufficient. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-10 2141, shorten. (Revised by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbv1 2404 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbv1v 2337 with disjoint variable conditions, not depending on ax-13 2374. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv2 2405 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbv2w 2338 with disjoint variable conditions, not depending on ax-13 2374. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style, avoid ax-10 2141. (Revised by Wolf Lammen, 10-Sep-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbv3h 2406 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbv3hv 2341 if possible. (Contributed by NM, 8-Jun-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbv1h 2407 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv2h 2408 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 11-May-1993.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvald 2409* | Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2453. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvaldw 2339 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvexd 2410* | Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2453. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbvexdw 2340 if possible. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | cbvaldva 2411* | Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbvaldvaw 2045 if possible. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvexdva 2412* | Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbvexdvaw 2046 if possible. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | cbval2 2413* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbval2v 2344 if possible. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbvex2 2414* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbvex2v 2346 if possible. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 16-Jun-2019.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | cbval2vv 2415* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbval2vw 2047 if possible. (Contributed by NM, 4-Feb-2005.) Remove dependency on ax-10 2141. (Revised by Wolf Lammen, 18-Jul-2021.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbvex2vv 2416* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbvex2vw 2048 if possible. (Contributed by NM, 26-Jul-1995.) Remove dependency on ax-10 2141. (Revised by Wolf Lammen, 18-Jul-2021.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | cbvex4v 2417* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker cbvex4vw 2049 if possible. (Contributed by NM, 26-Jul-1995.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
Theorem | equs4 2418 | Lemma used in proofs of implicit substitution properties. The converse requires either a disjoint variable condition (sbalex 2239) or a nonfreeness hypothesis (equs45f 2461). Usage of this theorem is discouraged because it depends on ax-13 2374. See equs4v 2007 for a weaker version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | equsal 2419 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See equsalvw 2011 and equsalv 2263 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsex 2420. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsex 2420 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See equsexvw 2012 and equsexv 2264 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2419. See equsexALT 2421 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsexALT 2421 | Alternate proof of equsex 2420. This proves the result directly, instead of as a corollary of equsal 2419 via equs4 2418. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2374 is ax6e 2385. This proof mimics that of equsal 2419 (in particular, note that pm5.32i 575, exbii 1854, 19.41 2232, mpbiran 706 correspond respectively to pm5.74i 270, albii 1826, 19.23 2208, a1bi 363). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsalh 2422 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See equsalhw 2292 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 2-Jun-1993.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexh 2423 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See equsexhv 2293 for a version with a disjoint variable condition which does not require ax-13 2374. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | axc15 2424 |
Derivation of set.mm's original ax-c15 36897 from ax-c11n 36896 and the shorter
ax-12 2175 that has replaced it.
Theorem ax12 2425 shows the reverse derivation of ax-12 2175 from ax-c15 36897. Normally, axc15 2424 should be used rather than ax-c15 36897, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 26-Mar-2023.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
Theorem | ax12 2425 | Rederivation of Axiom ax-12 2175 from ax12v 2176 (used only via sp 2180) , axc11r 2368, and axc15 2424 (on top of Tarski's FOL). Since this version depends on ax-13 2374, usage of the weaker ax12v 2176, ax12w 2133, ax12i 1974 are preferred. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax12b 2426 | A bidirectional version of axc15 2424. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax13ALT 2427 | Alternate proof of ax13 2377 from FOL, sp 2180, and axc9 2384. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | axc11n 2428 | Derive set.mm's original ax-c11n 36896 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2062. Use aecom 2429 instead when this does not lengthen the proof. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aecom 2429 | Commutation law for identical variable specifiers. Both sides of the biconditional are true when 𝑥 and 𝑦 are substituted with the same variable. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 10-May-1993.) Change to a biconditional. (Revised by BJ, 26-Sep-2019.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aecoms 2430 | A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | naecoms 2431 | A commutation rule for distinct variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | axc11 2432 | Show that ax-c11 36895 can be derived from ax-c11n 36896 in the form of axc11n 2428. Normally, axc11 2432 should be used rather than ax-c11 36895, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker axc11v 2260 when possible. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | hbae 2433 | All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker hbaev 2066 when possible. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | hbnae 2434 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker hbnaev 2069 when possible. (Contributed by NM, 13-May-1993.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfae 2435 | All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | ||
Theorem | nfnae 2436 | All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker nfnaew 2149 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbnaes 2437 | Rule that applies hbnae 2434 to antecedent. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 15-May-1993.) (New usage is discouraged.) |
⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | axc16i 2438* | Inference with axc16 2257 as its conclusion. (Contributed by NM, 20-May-2008.) (Proof modification is discouraged.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use axc16 2257 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16nfALT 2439* | Alternate proof of axc16nf 2259, shorter but requiring ax-11 2158 and ax-13 2374. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) | ||
Theorem | dral2 2440 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2374. Usage of albidv 1927 is preferred, which requires fewer axioms. (Contributed by NM, 27-Feb-2005.) Allow a shortening of dral1 2441. (Revised by Wolf Lammen, 4-Mar-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | dral1 2441 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker dral1v 2369 if possible. (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2158. (Revised by Wolf Lammen, 6-Sep-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | dral1ALT 2442 | Alternate proof of dral1 2441, shorter but requiring ax-11 2158. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | drex1 2443 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker drex1v 2371 if possible. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) | ||
Theorem | drex2 2444 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2374. Usage of exbidv 1928 is preferred, which requires fewer axioms. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | ||
Theorem | drnf1 2445 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use drnf1v 2372 instead. (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Theorem | drnf2 2446 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 5-May-2018.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use nfbidv 1929 instead. (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | nfald2 2447 | Variation on nfald 2326 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use nfald 2326 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | nfexd2 2448 | Variation on nfexd 2327 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use nfexd 2327 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Theorem | exdistrf 2449 | Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use exdistr 1962 instead. (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | dvelimf 2450 | Version of dvelimv 2454 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜓 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | ||
Theorem | dvelimdf 2451 | Deduction form of dvelimf 2450. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑧𝜒) & ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) | ||
Theorem | dvelimh 2452 | Version of dvelim 2453 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2374. Check out dvelimhw 2347 for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelim 2453* |
This theorem can be used to eliminate a distinct variable restriction on
𝑥 and 𝑧 and replace it with the
"distinctor" ¬ ∀𝑥𝑥 = 𝑦
as an antecedent. 𝜑 normally has 𝑧 free and can be read
𝜑(𝑧), and 𝜓 substitutes 𝑦 for
𝑧
and can be read
𝜑(𝑦). We do not require that 𝑥 and
𝑦
be distinct: if
they are not, the distinctor will become false (in multiple-element
domains of discourse) and "protect" the consequent.
To obtain a closed-theorem form of this inference, prefix the hypotheses with ∀𝑥∀𝑧, conjoin them, and apply dvelimdf 2451. Other variants of this theorem are dvelimh 2452 (with no distinct variable restrictions) and dvelimhw 2347 (that avoids ax-13 2374). Usage of this theorem is discouraged because it depends on ax-13 2374. Check out dvelimhw 2347 for a version requiring fewer axioms. (Contributed by NM, 23-Nov-1994.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimv 2454* | Similar to dvelim 2453 with first hypothesis replaced by a distinct variable condition. Usage of this theorem is discouraged because it depends on ax-13 2374. Check out dvelimhw 2347 for a version requiring fewer axioms. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (New usage is discouraged.) |
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimnf 2455* | Version of dvelim 2453 using "not free" notation. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | ||
Theorem | dveeq2ALT 2456* | Alternate proof of dveeq2 2380, shorter but requiring ax-11 2158. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | ||
Theorem | equvini 2457 | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2374. See equvinv 2036 for a shorter proof requiring fewer axioms when 𝑧 is required to be distinct from 𝑥 and 𝑦. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 16-Sep-2023.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | ||
Theorem | equvel 2458 | A variable elimination law for equality with no distinct variable requirements. Compare equvini 2457. Usage of this theorem is discouraged because it depends on ax-13 2374. Use equvelv 2038 when possible. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.) |
⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) | ||
Theorem | equs5a 2459 | A property related to substitution that unlike equs5 2462 does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2374. This proof uses ax12 2425, see equs5aALT 2366 for an alternative one using ax-12 2175 but not ax13 2377. Usage of the weaker equs5av 2275 is preferred, which uses ax12v2 2177, but not ax-13 2374. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5e 2460 | A property related to substitution that unlike equs5 2462 does not require a distinctor antecedent. This proof uses ax12 2425, see equs5eALT 2367 for an alternative one using ax-12 2175 but not ax13 2377. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | equs45f 2461 | Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2418 and does not require the nonfreeness hypothesis. Theorem sbalex 2239 replaces the nonfreeness hypothesis with a disjoint variable condition and equs5 2462 replaces it with a distinctor antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use sbalex 2239 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5 2462 | Lemma used in proofs of substitution properties. If there is a disjoint variable condition on 𝑥, 𝑦, then sbalex 2239 can be used instead; if 𝑦 is not free in 𝜑, then equs45f 2461 can be used. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | dveel1 2463* | Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) | ||
Theorem | dveel2 2464* | Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) | ||
Theorem | axc14 2465 |
Axiom ax-c14 36899 is redundant if we assume ax-5 1917.
Remark 9.6 in
[Megill] p. 448 (p. 16 of the preprint),
regarding axiom scheme C14'.
Note that 𝑤 is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 2464 and ax-5 1917. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) | ||
Theorem | sb6x 2466 | Equivalence involving substitution for a variable not free. Usage of this theorem is discouraged because it depends on ax-13 2374. Usage of sb6 2092 is preferred, which requires fewer axioms. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sbequ5 2467 | Substitution does not change an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 15-May-1993.) (New usage is discouraged.) |
⊢ ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sbequ6 2468 | Substitution does not change a distinctor. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sb5rf 2469 | Reversed substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 20-Sep-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | sb6rf 2470 | Reversed substitution. For a version requiring disjoint variables, but fewer axioms, see sb6rfv 2357. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker sb6rfv 2357 if possible. (Contributed by NM, 1-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) | ||
Theorem | ax12vALT 2471* | Alternate proof of ax12v2 2177, shorter, but depending on more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | 2ax6elem 2472 | We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. This theorem merges two ax6e 2385 instances ∃𝑧𝑧 = 𝑥 and ∃𝑤𝑤 = 𝑦 into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 42146. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by Wolf Lammen, 27-Sep-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑤 𝑤 = 𝑧 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) | ||
Theorem | 2ax6e 2473* | We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. Version of 2ax6elem 2472 with a distinct variable constraint. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 3-Oct-2023.) (New usage is discouraged.) |
⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | ||
Theorem | 2sb5rf 2474* | Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove distinct variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | 2sb6rf 2475* | Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 13-Apr-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | sbel2x 2476* | Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) | ||
Theorem | sb4b 2477 | Simplified definition of substitution when variables are distinct. Version of sb6 2092 with a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 27-May-1997.) Revise df-sb 2072. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
Theorem | sb4bOLD 2478 | Obsolete version of sb4b 2477 as of 21-Feb-2024. (Contributed by NM, 27-May-1997.) Revise df-sb 2072. (Revised by Wolf Lammen, 25-Jul-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
Theorem | sb3b 2479 | Simplified definition of substitution when variables are distinct. This is the biconditional strengthening of sb3 2480. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by BJ, 6-Oct-2018.) Shorten sb3 2480. (Revised by Wolf Lammen, 21-Feb-2021.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | sb3 2480 | One direction of a simplified definition of substitution when variables are distinct. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sb1 2481 | One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb5 2272) or a nonfreeness hypothesis (sb5f 2504). Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker sb1v 2094 when possible. (Contributed by NM, 13-May-1993.) Revise df-sb 2072. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb2 2482 | One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb6 2092) or a nonfreeness hypothesis (sb6f 2503). Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 13-May-1993.) Revise df-sb 2072. (Revised by Wolf Lammen, 26-Jul-2023.) (New usage is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | ||
Theorem | sb3OLD 2483 | Obsolete version of sb3 2480 as of 21-Feb-2024. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sb1OLD 2484 | Obsolete version of sb1 2481 as of 21-Feb-2024. (Contributed by NM, 13-May-1993.) Revise df-sb 2072. (Revised by Wolf Lammen, 29-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb3bOLD 2485 | Obsolete version of sb3b 2479 as of 21-Feb-2024. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | sb4a 2486 | A version of one implication of sb4b 2477 that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker sb4av 2240 when possible. (Contributed by NM, 2-Feb-2007.) Revise df-sb 2072. (Revised by Wolf Lammen, 28-Jul-2023.) (New usage is discouraged.) |
⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | dfsb1 2487 | Alternate definition of substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). This was the original definition before df-sb 2072. Note that it does not require dummy variables in its definiens; this is done by having 𝑥 free in the first conjunct and bound in the second. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by BJ, 9-Jul-2023.) Revise df-sb 2072. (Revised by Wolf Lammen, 29-Jul-2023.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | hbsb2 2488 | Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | ||
Theorem | nfsb2 2489 | Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | hbsb2a 2490 | Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | sb4e 2491 | One direction of a simplified definition of substitution that unlike sb4b 2477 does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | hbsb2e 2492 | Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) | ||
Theorem | hbsb3 2493 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2374. Check out bj-hbsb3v 34991 for a weaker version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | nfs1 2494 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2374. Check out nfs1v 2157 for a version requiring fewer axioms. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | axc16ALT 2495* | Alternate proof of axc16 2257, shorter but requiring ax-10 2141, ax-11 2158, ax-13 2374 and using df-nf 1791 and df-sb 2072. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16gALT 2496* | Alternate proof of axc16g 2256 that uses df-sb 2072 and requires ax-10 2141, ax-11 2158, ax-13 2374. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
Theorem | equsb1 2497 | Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker equsb1v 2107 if possible. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | ||
Theorem | equsb2 2498 | Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2374. Check out equsb1v 2107 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | ||
Theorem | dfsb2 2499 | An alternate definition of proper substitution that, like dfsb1 2487, mixes free and bound variables to avoid distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 17-Feb-2005.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | dfsb3 2500 | An alternate definition of proper substitution df-sb 2072 that uses only primitive connectives (no defined terms) on the right-hand side. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 6-Mar-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |