![]() |
Metamath
Proof Explorer Theorem List (p. 25 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | spv 2401* | Specialization, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker spvv 1996 if possible. (Contributed by NM, 30-Aug-1993.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spei 2402 | Inference from existential specialization, using implicit substitution. Remove a distinct variable constraint. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker speiv 1972 if possible. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ ∃𝑥𝜑 | ||
Theorem | chvar 2403 | Implicit substitution of 𝑦 for 𝑥 into a theorem. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker chvarfv 2241 if possible. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | chvarv 2404* | Implicit substitution of 𝑦 for 𝑥 into a theorem. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker chvarvv 1998 if possible. (Contributed by NM, 20-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | cbv3 2405 | Rule used to change bound variables, using implicit substitution, that does not use ax-c9 38846. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbv3v 2341 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbval 2406 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out cbvalw 2034, cbvalvw 2035, cbvalv1 2347 for versions requiring fewer axioms. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvex 2407 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out cbvexvw 2036, cbvexv1 2348 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbvalv 2408* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbvalvw 2035 for a version requiring fewer axioms, to be preferred when sufficient. (Contributed by NM, 5-Aug-1993.) Remove dependency on ax-10 2141 and shorten proof. (Revised by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvexv 2409* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbvexvw 2036 for a version requiring fewer axioms, to be preferred when sufficient. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-10 2141 and shorten proof. (Revised by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbv1 2410 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbv1v 2342 with disjoint variable conditions, not depending on ax-13 2380. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv2 2411 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbv2w 2343 with disjoint variable conditions, not depending on ax-13 2380. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style, avoid ax-10 2141. (Revised by Wolf Lammen, 10-Sep-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbv3h 2412 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbv3hv 2346 if possible. (Contributed by NM, 8-Jun-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbv1h 2413 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv2h 2414 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 11-May-1993.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvald 2415* | Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2459. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbvaldw 2344 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2380. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvexd 2416* | Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2459. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvexdw 2345 if possible. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | cbvaldva 2417* | Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvaldvaw 2037 if possible. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvexdva 2418* | Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvexdvaw 2038 if possible. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | cbval2 2419* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbval2v 2349 if possible. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbvex2 2420* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvex2v 2350 if possible. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 16-Jun-2019.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | cbval2vv 2421* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbval2vw 2039 if possible. (Contributed by NM, 4-Feb-2005.) Remove dependency on ax-10 2141. (Revised by Wolf Lammen, 18-Jul-2021.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbvex2vv 2422* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvex2vw 2040 if possible. (Contributed by NM, 26-Jul-1995.) Remove dependency on ax-10 2141. (Revised by Wolf Lammen, 18-Jul-2021.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | cbvex4v 2423* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvex4vw 2041 if possible. (Contributed by NM, 26-Jul-1995.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
Theorem | equs4 2424 | Lemma used in proofs of implicit substitution properties. The converse requires either a disjoint variable condition (sbalex 2243) or a nonfreeness hypothesis (equs45f 2467). Usage of this theorem is discouraged because it depends on ax-13 2380. See equs4v 1999 for a weaker version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | equsal 2425 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See equsalvw 2003 and equsalv 2268 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsex 2426. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsex 2426 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See equsexvw 2004 and equsexv 2269 for versions with disjoint variable conditions proved from fewer axioms. See also the dual form equsal 2425. See equsexALT 2427 for an alternate proof. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Feb-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsexALT 2427 | Alternate proof of equsex 2426. This proves the result directly, instead of as a corollary of equsal 2425 via equs4 2424. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2380 is ax6e 2391. This proof mimics that of equsal 2425 (in particular, note that pm5.32i 574, exbii 1846, 19.41 2236, mpbiran 708 correspond respectively to pm5.74i 271, albii 1817, 19.23 2212, a1bi 362). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsalh 2428 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See equsalhw 2295 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 2-Jun-1993.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexh 2429 | An equivalence related to implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. See equsexhv 2296 for a version with a disjoint variable condition which does not require ax-13 2380. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | axc15 2430 |
Derivation of set.mm's original ax-c15 38845 from ax-c11n 38844 and the shorter
ax-12 2178 that has replaced it.
Theorem ax12 2431 shows the reverse derivation of ax-12 2178 from ax-c15 38845. Normally, axc15 2430 should be used rather than ax-c15 38845, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 26-Mar-2023.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
Theorem | ax12 2431 | Rederivation of Axiom ax-12 2178 from ax12v 2179 (used only via sp 2184), axc11r 2374, and axc15 2430 (on top of Tarski's FOL). Since this version depends on ax-13 2380, usage of the weaker ax12v 2179, ax12w 2133, ax12i 1966 are preferred. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax12b 2432 | A bidirectional version of axc15 2430. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax13ALT 2433 | Alternate proof of ax13 2383 from FOL, sp 2184, and axc9 2390. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | axc11n 2434 | Derive set.mm's original ax-c11n 38844 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 2055. Use aecom 2435 instead when this does not lengthen the proof. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aecom 2435 | Commutation law for identical variable specifiers. Both sides of the biconditional are true when 𝑥 and 𝑦 are substituted with the same variable. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 10-May-1993.) Change to a biconditional. (Revised by BJ, 26-Sep-2019.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aecoms 2436 | A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | naecoms 2437 | A commutation rule for distinct variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | axc11 2438 | Show that ax-c11 38843 can be derived from ax-c11n 38844 in the form of axc11n 2434. Normally, axc11 2438 should be used rather than ax-c11 38843, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker axc11v 2265 when possible. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | hbae 2439 | All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker hbaev 2059 when possible. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | hbnae 2440 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker hbnaev 2062 when possible. (Contributed by NM, 13-May-1993.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfae 2441 | All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | ||
Theorem | nfnae 2442 | All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfnaew 2149 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbnaes 2443 | Rule that applies hbnae 2440 to antecedent. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 15-May-1993.) (New usage is discouraged.) |
⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | axc16i 2444* | Inference with axc16 2262 as its conclusion. (Contributed by NM, 20-May-2008.) (Proof modification is discouraged.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use axc16 2262 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16nfALT 2445* | Alternate proof of axc16nf 2264, shorter but requiring ax-11 2158 and ax-13 2380. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) | ||
Theorem | dral2 2446 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of albidv 1919 is preferred, which requires fewer axioms. (Contributed by NM, 27-Feb-2005.) Allow a shortening of dral1 2447. (Revised by Wolf Lammen, 4-Mar-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | dral1 2447 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker dral1v 2375 if possible. (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2158. (Revised by Wolf Lammen, 6-Sep-2018.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | dral1ALT 2448 | Alternate proof of dral1 2447, shorter but requiring ax-11 2158. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | drex1 2449 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker drex1v 2377 if possible. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) | ||
Theorem | drex2 2450 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of exbidv 1920 is preferred, which requires fewer axioms. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | ||
Theorem | drnf1 2451 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use drnf1v 2378 instead. (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Theorem | drnf2 2452 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 5-May-2018.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use nfbidv 1921 instead. (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | nfald2 2453 | Variation on nfald 2332 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use nfald 2332 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | nfexd2 2454 | Variation on nfexd 2333 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use nfexd 2333 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Theorem | exdistrf 2455 | Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use exdistr 1954 instead. (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | dvelimf 2456 | Version of dvelimv 2460 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜓 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | ||
Theorem | dvelimdf 2457 | Deduction form of dvelimf 2456. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑧𝜒) & ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) | ||
Theorem | dvelimh 2458 | Version of dvelim 2459 without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out dvelimhw 2351 for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelim 2459* |
This theorem can be used to eliminate a distinct variable restriction on
𝑥 and 𝑧 and replace it with the
"distinctor" ¬ ∀𝑥𝑥 = 𝑦
as an antecedent. 𝜑 normally has 𝑧 free and can be read
𝜑(𝑧), and 𝜓 substitutes 𝑦 for
𝑧
and can be read
𝜑(𝑦). We do not require that 𝑥 and
𝑦
be distinct: if
they are not, the distinctor will become false (in multiple-element
domains of discourse) and "protect" the consequent.
To obtain a closed-theorem form of this inference, prefix the hypotheses with ∀𝑥∀𝑧, conjoin them, and apply dvelimdf 2457. Other variants of this theorem are dvelimh 2458 (with no distinct variable restrictions) and dvelimhw 2351 (that avoids ax-13 2380). Usage of this theorem is discouraged because it depends on ax-13 2380. Check out dvelimhw 2351 for a version requiring fewer axioms. (Contributed by NM, 23-Nov-1994.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimv 2460* | Similar to dvelim 2459 with first hypothesis replaced by a distinct variable condition. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out dvelimhw 2351 for a version requiring fewer axioms. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (New usage is discouraged.) |
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimnf 2461* | Version of dvelim 2459 using "not free" notation. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | ||
Theorem | dveeq2ALT 2462* | Alternate proof of dveeq2 2386, shorter but requiring ax-11 2158. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | ||
Theorem | equvini 2463 | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2380. See equvinv 2028 for a shorter proof requiring fewer axioms when 𝑧 is required to be distinct from 𝑥 and 𝑦. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 16-Sep-2023.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | ||
Theorem | equvel 2464 | A variable elimination law for equality with no distinct variable requirements. Compare equvini 2463. Usage of this theorem is discouraged because it depends on ax-13 2380. Use equvelv 2030 when possible. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.) |
⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) | ||
Theorem | equs5a 2465 | A property related to substitution that unlike equs5 2468 does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2380. This proof uses ax12 2431, see equs5aALT 2372 for an alternative one using ax-12 2178 but not ax13 2383. Usage of the weaker equs5av 2280 is preferred, which uses ax12v2 2180, but not ax-13 2380. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5e 2466 | A property related to substitution that unlike equs5 2468 does not require a distinctor antecedent. This proof uses ax12 2431, see equs5eALT 2373 for an alternative one using ax-12 2178 but not ax13 2383. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) (New usage is discouraged.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | equs45f 2467 | Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2424 and does not require the nonfreeness hypothesis. Theorem sbalex 2243 replaces the nonfreeness hypothesis with a disjoint variable condition and equs5 2468 replaces it with a distinctor antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use sbalex 2243 instead. (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5 2468 | Lemma used in proofs of substitution properties. If there is a disjoint variable condition on 𝑥, 𝑦, then sbalex 2243 can be used instead; if 𝑦 is not free in 𝜑, then equs45f 2467 can be used. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | dveel1 2469* | Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) | ||
Theorem | dveel2 2470* | Quantifier introduction when one pair of variables is disjoint. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) | ||
Theorem | axc14 2471 |
Axiom ax-c14 38847 is redundant if we assume ax-5 1909.
Remark 9.6 in
[Megill] p. 448 (p. 16 of the preprint),
regarding axiom scheme C14'.
Note that 𝑤 is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 2470 and ax-5 1909. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) | ||
Theorem | sb6x 2472 | Equivalence involving substitution for a variable not free. Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of sb6 2085 is preferred, which requires fewer axioms. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sbequ5 2473 | Substitution does not change an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 15-May-1993.) (New usage is discouraged.) |
⊢ ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sbequ6 2474 | Substitution does not change a distinctor. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sb5rf 2475 | Reversed substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 20-Sep-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | sb6rf 2476 | Reversed substitution. For a version requiring disjoint variables, but fewer axioms, see sb6rfv 2363. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker sb6rfv 2363 if possible. (Contributed by NM, 1-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) | ||
Theorem | ax12vALT 2477* | Alternate proof of ax12v2 2180, shorter, but depending on more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | 2ax6elem 2478 | We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. This theorem merges two ax6e 2391 instances ∃𝑧𝑧 = 𝑥 and ∃𝑤𝑤 = 𝑦 into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 44529. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Wolf Lammen, 27-Sep-2018.) (New usage is discouraged.) |
⊢ (¬ ∀𝑤 𝑤 = 𝑧 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) | ||
Theorem | 2ax6e 2479* | We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. Version of 2ax6elem 2478 with a distinct variable constraint. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 3-Oct-2023.) (New usage is discouraged.) |
⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | ||
Theorem | 2sb5rf 2480* | Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove distinct variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | 2sb6rf 2481* | Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 13-Apr-2023.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | sbel2x 2482* | Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) | ||
Theorem | sb4b 2483 | Simplified definition of substitution when variables are distinct. Version of sb6 2085 with a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 27-May-1997.) Revise df-sb 2065. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
Theorem | sb3b 2484 | Simplified definition of substitution when variables are distinct. This is the biconditional strengthening of sb3 2485. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by BJ, 6-Oct-2018.) Shorten sb3 2485. (Revised by Wolf Lammen, 21-Feb-2021.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | sb3 2485 | One direction of a simplified definition of substitution when variables are distinct. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sb1 2486 | One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb5 2277) or a nonfreeness hypothesis (sb5f 2506). Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker sb1v 2087 when possible. (Contributed by NM, 13-May-1993.) Revise df-sb 2065. (Revised by Wolf Lammen, 21-Feb-2024.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb2 2487 | One direction of a simplified definition of substitution. The converse requires either a disjoint variable condition (sb6 2085) or a nonfreeness hypothesis (sb6f 2505). Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 13-May-1993.) Revise df-sb 2065. (Revised by Wolf Lammen, 26-Jul-2023.) (New usage is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | ||
Theorem | sb4a 2488 | A version of one implication of sb4b 2483 that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker sb4av 2245 when possible. (Contributed by NM, 2-Feb-2007.) Revise df-sb 2065. (Revised by Wolf Lammen, 28-Jul-2023.) (New usage is discouraged.) |
⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | dfsb1 2489 | Alternate definition of substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). This was the original definition before df-sb 2065. Note that it does not require dummy variables in its definiens; this is done by having 𝑥 free in the first conjunct and bound in the second. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by BJ, 9-Jul-2023.) Revise df-sb 2065. (Revised by Wolf Lammen, 29-Jul-2023.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | hbsb2 2490 | Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | ||
Theorem | nfsb2 2491 | Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | hbsb2a 2492 | Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | sb4e 2493 | One direction of a simplified definition of substitution that unlike sb4b 2483 does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | hbsb2e 2494 | Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) | ||
Theorem | hbsb3 2495 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out bj-hbsb3v 36781 for a weaker version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | nfs1 2496 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out nfs1v 2157 for a version requiring fewer axioms. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | axc16ALT 2497* | Alternate proof of axc16 2262, shorter but requiring ax-10 2141, ax-11 2158, ax-13 2380 and using df-nf 1782 and df-sb 2065. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16gALT 2498* | Alternate proof of axc16g 2261 that uses df-sb 2065 and requires ax-10 2141, ax-11 2158, ax-13 2380. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
Theorem | equsb1 2499 | Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker equsb1v 2105 if possible. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | ||
Theorem | equsb2 2500 | Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2380. Check out equsb1v 2105 for a version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
⊢ [𝑦 / 𝑥]𝑦 = 𝑥 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |